Part I

- 1. Prove that the product of two uniformly continuous real-valued functions on (0, 1) is also uniformly continuous on (0, 1).
- 2. For what values of r and n is there an $n \times n$ -matrix of rank r, with real entries, such that $A^2 = 0$? Here 0 denotes the $n \times n$ zero matrix.
- 3. Determine all entire functions $f: \mathbb{C} \longrightarrow \mathbb{C}$ that satisfy $|f(z)| \leq e^{\operatorname{Re}(z)}$ for all complex z. (An entire function is one that is analytic for all complex z.)
- 4. Let G be a group, H be a subgroup of finite index n and $g \in G$.
 - (a) Show that $g^k \in H$ for some $0 < k \le n$.
 - (b) Show by example that g^n may not lie in H.
- 5. Let $\phi : [0,1] \times \mathbb{R} \to \mathbb{R}$ be bounded and continuous. For each $n \in \mathbb{N}$ let $F_n : [0,1] \to \mathbb{R}$ satisfy

$$F_n(0) = \frac{1}{n}, \ F'_n(t) = \phi(t, F_n(t)) \text{ for } t \in [0, 1].$$

Here $F'_n(t)$ denotes the right derivative if t = 0 and the left derivative if t = 1.

(a) Prove that there is a subsequence such that $\{F_{n_k}\}$ converges uniformly to a limit function F.

(b) Prove that F solves

$$F(0) = 0, \ F'(t) = \phi(t, F(t)) \text{ for } t \in [0, 1].$$

6. Show that there is no real $n \times n$ matrix A such that

$$A^{2} = \begin{pmatrix} -a_{1} & 0 & \dots & 0\\ 0 & -a_{2} & \dots & 0\\ \dots & & & & \\ 0 & 0 & \dots & -a_{n} \end{pmatrix},$$

where a_1, \ldots, a_n are distinct positive real numbers.

Part II

- 7. Use contour integration to evaluate the integral $\int_{-\infty}^{\infty} \frac{\sin \pi x}{x^2 + x + 1} dx$.
- 8. Let \mathbb{Z} be the ring of integers, p a prime, and $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ the field with p elements. Let x be an indeterminant, and set $R_1 = \mathbb{F}_p[x]/(x^2 2)$, $R_2 = \mathbb{F}_p[x]/(x^2 3)$. Determine whether the rings R_1 and R_2 are isomorphic in each of the following cases:
 - (a) p = 2,
 - (b) p = 5,
 - (c) p = 11.
- 9. Let **C** be a simple closed C^1 -curve in \mathbb{R}^2 with the positive orientation enclosing a region D. Assume D has area 2 and centroid (3, 4). Let $\mathbf{F}(x, y) = (y^2, x^2 + 3x)$. Find the line integral $\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{s}$.
- 10. Let A be a nilpotent $n \times n$ -matrix, i.e., $A^m = 0$ for some $m \ge 1$, where 0 is the $n \times n$ -zero matrix. Prove or disprove the following assertions:
 - (a) $A^n = 0$,
 - (b) det(A + I) = 1. Here I denotes the $n \times n$ identity matrix.
 - (c) $\det(D + A) = \det(D)$ for every diagonal $n \times n$ -matrix D?
- 11. (a) Show that all the zeros of the polynomial $f(z) = z^8 3z + 1$ lie in the disk |z| < 5/4. (b) How many zeros does f have in the unit circle?
- 12. A complex number is called *algebraic* if it is a root of a non-zero polynomial with integer coefficients. Show that $a = \sin(r^o)$ is an algebraic number for every rational number r. Here r^o denotes the angle of r degrees or, equivalently, of $\frac{\pi r}{180}$ radians.