Applied Math Qualifying Exam: Sept. 11, 2004

Part I

1. Let $0<b<a$. Use contour integration to evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos (\theta))^{2}}
$$

2. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a real matrix with $a, b, c, d>0$. Show that A has an eigenvector $\binom{x}{y} \in \mathbb{R}^{2}$, with $x, y>0$.
3. Consider the following initial-boundary-value problem for $u(x, t)$:

$$
\left\{\begin{array}{l}
u_{t}+u_{x x x x}=0, \quad 0<x<\pi, \quad t>0 \\
u_{x}(0, t)=u_{x x x}(0, t)=u_{x}(\pi, t)=u_{x x x}(\pi, t)=0, \quad t>0 \\
u(x, 0)=\cos ^{2}(x), \quad 0<x<\pi
\end{array}\right.
$$

(a) The solution tends to a steady-state, $v(x)=\lim _{t \rightarrow \infty} u(x, t)$. Find $v(x)$.
(b) Find the solution $u(x, t)$.
(c) How much time does it take for $u(x, t)$ to get within 10^{-2} of the steady-state for all $x \in(0, \pi)$?
4. Consider

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x} .
$$

(a) For which x does the series converge absolutely?
(b) On which intervals does it converge uniformly?
(c) Is f continuous wherever the series converges?
(d) Is f bounded?
5. Suppose $f(z)$ is analytic on a connected region $\Omega \subset \mathbb{C}$. Show that $|f(z)|^{2}$ is harmonic on Ω if and only if f is constant.
6. Let V be the vector space of continuous, real-valued functions on the interval $[0, \pi]$, with the inner-product

$$
\langle f, g\rangle:=\int_{0}^{\pi} f(x) g(x) d x
$$

(a) Find an orthonormal basis for the subspace $S:=\operatorname{span}\{1, \sin (x)\}$.
(b) Compute the distance of $\sin ^{2}(x)$ from S.

Part II

1. Consider the vector field $\mathbf{F}(x, y, z)=\left(y z+x^{4}\right) \hat{\mathbf{i}}+\left(x(1+z)+e^{y}\right) \hat{\mathbf{j}}+(x y+\sin (z)) \hat{\mathbf{k}}$. Let C be a circle of radius R lying in the plane $2 x+y+3 z=6$. What are the possible values of the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?
2. A forced mass-spring system is governed by the following ODE for $y(t)$:

$$
\begin{equation*}
y^{\prime \prime}+k y=f(t) \tag{*}
\end{equation*}
$$

where $k>0$ is a constant, and f is a smooth, odd, T-periodic function.
(a) Find the general solution when $f=0$.
(b) By expanding f in a Fourier series, find a formal (i.e. infinite series) particular solution of $\left({ }^{*}\right)$.
(c) Under what conditions on f and k will the system exhibit resonance?
3. Show that $2 e^{-z}-z+3$ has exactly one root in the right half-plane $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$.
4. Let a, b, c, d be real numbers, not all zero. Find the eigenvalues of the following 4×4 matrix and describe the eigenspace decomposition of \mathbb{R}^{4} :

$$
\left(\begin{array}{llll}
a a & a b & a c & a d \\
b a & b b & b c & b d \\
c a & c b & c c & c d \\
d a & d b & d c & d d
\end{array}\right)
$$

5. Define $f(x)=x^{2}$ for $-\pi<x \leq \pi$, and extend it to be 2π-periodic.
(a) Find the Fourier series of f.
(b) Use (a) to evaluate $\sum_{j=1}^{\infty} \frac{(-1)^{j}}{j^{2}}$ (state clearly any theorems you use).
6. Consider the following PDE for $u(x, t)$:

$$
u_{t}-a u_{x x}-b u+c u^{3}=0, \quad-\infty<x<\infty, \quad t>0
$$

($a, b, c>0$ are constants).
(a) Use scaling to reduce the problem to the form

$$
\begin{equation*}
w_{t}-w_{x x}-w+w^{3}=0, \quad-\infty<x<\infty, \quad t>0 \tag{*}
\end{equation*}
$$

(b) Suppose $w(x, t)$ is a smooth solution of $(*)$ with $w_{x}(x, t), w_{t}(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$. Show that the quantity

$$
\int_{-\infty}^{\infty}\left\{\frac{1}{2} w_{x}^{2}(x, t)+\frac{1}{4}\left(w^{2}(x, t)-1\right)^{2}\right\} d x
$$

(if it is finite) is a non-increasing function of time.
(c) Suppose further that

$$
w(x, t) \rightarrow\left\{\begin{array}{cl}
-1 & x \rightarrow-\infty \\
1 & x \rightarrow+\infty
\end{array}\right.
$$

Suppose the solution tends to a steady-state, $v(x)=\lim _{t \rightarrow \infty} w(x, t)$. Find the form of $v(x)$.

