Pure Math Qualifying Exam: Sept. 11, 2004

Part I

1. Let $0<b<a$. Use contour integration to evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos (\theta))^{2}} .
$$

2. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a real matrix with $a, b, c, d>0$. Show that A has an eigenvector $\binom{x}{y} \in \mathbb{R}^{2}$, with $x, y>0$.
3. Prove that every group of order p^{m} can be generated by m elements. Here p is a prime.
4. Consider

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x} .
$$

(a) For which x does the series converge absolutely?
(b) On which intervals does it converge uniformly?
(c) Is f continuous wherever the series converges?
(d) Is f bounded?
5. Suppose f is analytic on $D:=\{z \in \mathbb{C}| | z \mid<1\}$, continuous on its closure, \bar{D}, and real-valued on the boundary of D. Show that f is constant on \bar{D}.
6. Let $M^{n, n}$ denote the vector space of $n \times n$ real matrices. Consider the linear transformation $L: M^{n, n} \rightarrow M^{n, n}$ defined by $L(A)=A+A^{T}$ (here A^{T} denotes the transpose of the matrix A).
(a) Let $n=2$. Find bases for the kernel, $\operatorname{Ker}(L)$, and the range, $\operatorname{Ran}(L)$, of L.
(b) For all $n \geq 2$, find the dimensions of $\operatorname{Ker}(L)$ and $\operatorname{Ran}(L)$.

Part II

1. Consider the vector field $\mathbf{F}(x, y, z)=\left(y z+x^{4}\right) \hat{\mathbf{i}}+\left(x(1+z)+e^{y}\right) \hat{\mathbf{j}}+(x y+\sin (z)) \hat{\mathbf{k}}$. Let C be a circle of radius R lying in the plane $2 x+y+3 z=6$. What are the possible values of the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?
2. Let $C=C^{0}([0,1])$ be the ring of continuous functions $f:[0,1] \longrightarrow \mathbf{R}$. For $a \in[0,1]$, define $I_{a}=\{f \in C \mid f(a)=0\}$.
(a) Show that I_{a} is a maximal ideal of C.
(b) Show that every maximal ideal of C is of the form I_{a} for some $a \in[0,1]$.
(c) Show that part (b) fails if the closed interval $[0,1]$ is replaced by the open interval $(0,1)$.
3. Show that $2 e^{-z}-z+3$ has exactly one root in the right half-plane $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$.
4. Let a, b, c, d be real numbers, not all zero. Find the eigenvalues of the following 4×4 matrix and describe the eigenspace decomposition of \mathbb{R}^{4} :

$$
\left(\begin{array}{llll}
a a & a b & a c & a d \\
b a & b b & b c & b d \\
c a & c b & c c & c d \\
d a & d b & d c & d d
\end{array}\right)
$$

5. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous, and define $F(t):=\int_{0}^{t} f(s, t) d s$. Prove (carefully) that F is continuous on $[0,1]$.
6. Let F be a finite field, $f(x) \in F[x]$ be a polynomial with coefficients in F, and $F \subset E$ be a field extension (not necessarily finite). Show that if E contains one root of $f(x)$ then it contains every root of $f(x)$.
