Pure Math Qualifying Exam: Sept. 11, 2004

Part I

1. Let 0 < b < a. Use contour integration to evaluate the integral

$$\int_0^{2\pi} \frac{d\theta}{(a+b\cos(\theta))^2}$$

- 2. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a real matrix with a, b, c, d > 0. Show that A has an eigenvector $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$, with x, y > 0.
- 3. Prove that every group of order p^m can be generated by m elements. Here p is a prime.
- 4. Consider

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}$$

- (a) For which x does the series converge absolutely?
- (b) On which intervals does it converge uniformly?
- (c) Is f continuous wherever the series converges?
- (d) Is f bounded?
- 5. Suppose f is analytic on $D := \{z \in \mathbb{C} \mid |z| < 1\}$, continuous on its closure, \overline{D} , and real-valued on the boundary of D. Show that f is constant on \overline{D} .
- 6. Let $M^{n,n}$ denote the vector space of $n \times n$ real matrices. Consider the linear transformation $L: M^{n,n} \to M^{n,n}$ defined by $L(A) = A + A^T$ (here A^T denotes the transpose of the matrix A).
 - (a) Let n = 2. Find bases for the kernel, Ker(L), and the range, Ran(L), of L.
 - (b) For all $n \ge 2$, find the dimensions of Ker(L) and Ran(L).

Part II

1. Consider the vector field $\mathbf{F}(x, y, z) = (yz + x^4)\mathbf{\hat{i}} + (x(1+z) + e^y)\mathbf{\hat{j}} + (xy + \sin(z))\mathbf{\hat{k}}$. Let *C* be a circle of radius *R* lying in the plane 2x + y + 3z = 6. What are the possible values of the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$?

- 2. Let $C = C^0([0,1])$ be the ring of continuous functions $f : [0,1] \longrightarrow \mathbf{R}$. For $a \in [0,1]$, define $I_a = \{f \in C \mid f(a) = 0\}$.
 - (a) Show that I_a is a maximal ideal of C.

•

- (b) Show that every maximal ideal of C is of the form I_a for some $a \in [0, 1]$.
- (c) Show that part (b) fails if the closed interval [0, 1] is replaced by the open interval (0, 1).
- 3. Show that $2e^{-z} z + 3$ has exactly one root in the right half-plane $\{z \in \mathbb{C} \mid Re(z) > 0\}$.
- 4. Let a, b, c, d be real numbers, not all zero. Find the eigenvalues of the following 4×4 matrix and describe the eigenspace decomposition of \mathbb{R}^4 :

$$\begin{pmatrix} aa & ab & ac & ad \\ ba & bb & bc & bd \\ ca & cb & cc & cd \\ da & db & dc & dd \end{pmatrix}$$

- 5. Let $f : [0,1] \times [0,1] \to \mathbb{R}$ be continuous, and define $F(t) := \int_0^t f(s,t) ds$. Prove (carefully) that F is continuous on [0,1].
- 6. Let F be a finite field, $f(x) \in F[x]$ be a polynomial with coefficients in F, and $F \subset E$ be a field extension (not necessarily finite). Show that if E contains one root of f(x) then it contains every root of f(x).