Applied Mathematics Qualifying Exam September 3, 2005

Part I

1. What sort of graph does the equation

$$x^2 - 4xy + 8y^2 - 4yz + z^2 = 9$$

have? You don't need to sketch the graph; a good description in words is enough.

- 2. Define the open upper half-plane $U = \{\Im z > 0\}$ and the closed upper half-plane $\overline{U} = \{\Im z \ge 0\}$, where $\Im z$ denotes the imaginary part of z. Find a function h(z) defined on \overline{U} that satisfies the following conditions:
 - h is continuous on $\overline{U} \setminus \{-1, 1\}$ and harmonic on U;
 - h(x) = 1 for -1 < x < 1, while h(x) = 0 for x < -1 and for x > 1;
 - As |z| tends to infinity with $z \in U$, the value h(z) tends to zero.

3. For any continuous function $g: [-\pi, \pi] \to \mathbb{R}$, define

$$||g||_p = \left[\int_{-\pi}^{\pi} |g(x)|^p \, dx\right]^{1/p} \quad \text{for any real number } p \ge 1$$

and

$$\hat{g}(n) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{-int} g(t) dt$$
 for any integer n .

Let $f : [-\pi, \pi] \to \mathbb{R}$ be a continuously differentiable real-valued function such that $f(-\pi) = f(\pi)$.

(a) Show that

$$||f'||_2^2 = \sum_{n=-\infty}^{\infty} n^2 |\hat{f}(n)|^2.$$

(You may quote standard results about Fourier series.)

(b) Prove that

$$\sum_{n=-\infty}^{\infty} |\hat{f}(n)| \le \frac{1}{\sqrt{2\pi}} ||f||_1 + \frac{\pi}{\sqrt{3}} ||f'||_2.$$

(You may use without proof the fact that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.)

(continued on back)

4. The motion x = x(t) of a particle in a symmetric double-well potential is modeled by the following ODE in dimensionless form:

$$x'' + \omega^2 (x - x^3) = 0$$

Here $\omega > 0$ is constant.

- (a) Find and classify the type of each equilibrium point.
- (b) Plot the phase-plane x' versus x for this conservative system.
- (c) Let the initial conditions be x(0) = 0 and $x'(0) = x_0$. For what values of x_0 does a periodic solution exist?
- 5. Define $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
 - (a) Show that A is similar to B.
 - (b) Verify that

$$e^{tB} = \begin{bmatrix} e^t & te^t \\ 0 & e^t \end{bmatrix}.$$

(c) Solve the system of differential equations

$$\frac{d\mathbf{x}(t)}{dt} = A\mathbf{x}(t), \quad \mathbf{x}(0) = \begin{bmatrix} 3\\ 2 \end{bmatrix}$$

6. Using the calculus of residues (contour integration), evaluate the integral

$$\int_0^\infty \frac{x^{1/3}}{1+x^2} \, dx.$$

Applied Mathematics Qualifying Exam September 3, 2005

Part II

1. Let \mathbf{F} be the vector field defined by

$$\mathbf{F}(x, y, z) = (x^2 + x)\mathbf{i} - (3xz - y)\mathbf{j} + (4z + 1)\mathbf{k}.$$

Let S denote the surface of the sphere given by the equation $x^2 + y^2 + z^2 = 4$.

- (a) Calculate the flux of the vector field \mathbf{F} outwards through S.
- (b) Let S_1 denote the part of S that lies above the xy-plane. Calculate the flux of **F** upwards through S_1 .
- 2. Let a > 0, D, α , and $u_1 > u_0$ be constants. Suppose that a ball of radius a > 0 is initially heated to a uniform temperature u_1 and then proceeds to cool off due to Newtonian cooling on the boundary sphere. Assume that the temperature u(r, t) is radially symmetric. An appropriate model is a function u satisfying:
 - $u_t = D(u_{rr} + \frac{2}{r}u_r)$ for $0 \le r \le a$ and $t \ge 0$;
 - $-Du_r = \alpha(u u_0)$ on r = a;
 - u is bounded as $r \to 0$;
 - $u(r,0) = u_1$ for $0 \le r \le a$.
 - (a) What are the physical dimensions of D and α ? What is the steady-state solution? (The transformation u = v/r is helpful here.)
 - (b) Show that the eigenvalue relation has the form $\tan z = z/(1-\beta)$ for some constant β . Calculate β explicitly, show that β is dimensionless, and graph the eigenvalue relation. Express the solution as an eigenfunction expansion.
- 3. Let I be the $m \times m$ identity matrix and J the $m \times m$ matrix with 1 in every entry.
 - (a) Prove that $det(qI + rJ) = q^{m-1}(mr + q)$ for all real numbers q and r.
 - (b) Assume that q > 0 and r > 0. If A is an $m \times n$ matrix with $AA^T = qI + rJ$, show that $m \le n$.

(continued on back)

4. Let $a_1, \ldots, a_n \in \mathbb{R}$. Show that for an appropriate choice of branch, the transformation

$$z \mapsto \left(\prod_{i=1}^n (z-a_i)\right)^{1/n}$$

maps the upper half plane into itself. Describe the image of the real axis.

5. Show that

$$2^{1-p} \le \frac{x^p + y^p}{(x+y)^p} \le 1$$

for any $x > 0, y > 0, p \ge 1$.

6. The displacements $y_1(t)$ and $y_2(t)$ for a coupled mass-spring system subject to an external forcing f(t) satisfy the ODE system

$$m_1 y_1'' = -k_1 y_1 + k_2 (y_2 - y_1)$$

$$m_2 y_2'' = -k_2 (y_2 - y_1) + f(t).$$

- (a) Write this system in the form y'' = Ay + g for some matrix A and some vectors y and g.
- (b) If $m_1 = m_2 = 1$, $k_1 = 5$, $k_2 = 6$, and f(t) = 0, find the general solution to this system by first looking for a solution of the form $y = ve^{i\omega_0 t}$ for some unknown vector v and frequency ω_0 . (Here $i = \sqrt{-1}$.)
- (c) Now let $f(t) = \sin(\omega t)$. Find a particular solution for this system of the form $y(t) = r \sin(\omega t)$, where r is a vector independent of t but dependent on ω that is to be found. Give a rough plot of |r| versus ω^2 . For what values of ω will resonance occur?