# Applied Mathematics Qualifying Exam 

September 3, 2005

## Part I

1. What sort of graph does the equation

$$
x^{2}-4 x y+8 y^{2}-4 y z+z^{2}=9
$$

have? You don't need to sketch the graph; a good description in words is enough.
2. Define the open upper half-plane $U=\{\Im z>0\}$ and the closed upper half-plane $\bar{U}=\{\Im z \geq 0\}$, where $\Im z$ denotes the imaginary part of $z$. Find a function $h(z)$ defined on $\bar{U}$ that satisfies the following conditions:

- $h$ is continuous on $\bar{U} \backslash\{-1,1\}$ and harmonic on $U$;
- $h(x)=1$ for $-1<x<1$, while $h(x)=0$ for $x<-1$ and for $x>1$;
- As $|z|$ tends to infinity with $z \in U$, the value $h(z)$ tends to zero.

3. For any continuous function $g:[-\pi, \pi] \rightarrow \mathbb{R}$, define

$$
\|g\|_{p}=\left[\int_{-\pi}^{\pi}|g(x)|^{p} d x\right]^{1 / p} \quad \text { for any real number } p \geq 1
$$

and

$$
\hat{g}(n)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} e^{-i n t} g(t) d t \quad \text { for any integer } n
$$

Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be a continuously differentiable real-valued function such that $f(-\pi)=f(\pi)$.
(a) Show that

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{n=-\infty}^{\infty} n^{2}|\hat{f}(n)|^{2}
$$

(You may quote standard results about Fourier series.)
(b) Prove that

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)| \leq \frac{1}{\sqrt{2 \pi}}\|f\|_{1}+\frac{\pi}{\sqrt{3}}\left\|f^{\prime}\right\|_{2}
$$

(You may use without proof the fact that $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.)
4. The motion $x=x(t)$ of a particle in a symmetric double-well potential is modeled by the following ODE in dimensionless form:

$$
x^{\prime \prime}+\omega^{2}\left(x-x^{3}\right)=0 .
$$

Here $\omega>0$ is constant.
(a) Find and classify the type of each equilibrium point.
(b) Plot the phase-plane $x^{\prime}$ versus $x$ for this conservative system.
(c) Let the initial conditions be $x(0)=0$ and $x^{\prime}(0)=x_{0}$. For what values of $x_{0}$ does a periodic solution exist?
5. Define $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
(a) Show that $A$ is similar to $B$.
(b) Verify that

$$
e^{t B}=\left[\begin{array}{cc}
e^{t} & t e^{t} \\
0 & e^{t}
\end{array}\right]
$$

(c) Solve the system of differential equations

$$
\frac{d \mathbf{x}(t)}{d t}=A \mathbf{x}(t), \quad \mathbf{x}(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

6. Using the calculus of residues (contour integration), evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{1+x^{2}} d x
$$

# Applied Mathematics Qualifying Exam <br> September 3, 2005 <br> Part II 

1. Let $\mathbf{F}$ be the vector field defined by

$$
\mathbf{F}(x, y, z)=\left(x^{2}+x\right) \mathbf{i}-(3 x z-y) \mathbf{j}+(4 z+1) \mathbf{k}
$$

Let $S$ denote the surface of the sphere given by the equation $x^{2}+y^{2}+z^{2}=4$.
(a) Calculate the flux of the vector field $\mathbf{F}$ outwards through $S$.
(b) Let $S_{1}$ denote the part of $S$ that lies above the $x y$-plane. Calculate the flux of $\mathbf{F}$ upwards through $S_{1}$.
2. Let $a>0, D, \alpha$, and $u_{1}>u_{0}$ be constants. Suppose that a ball of radius $a>0$ is initially heated to a uniform temperature $u_{1}$ and then proceeds to cool off due to Newtonian cooling on the boundary sphere. Assume that the temperature $u(r, t)$ is radially symmetric. An appropriate model is a function $u$ satisfying:

- $u_{t}=D\left(u_{r r}+\frac{2}{r} u_{r}\right)$ for $0 \leq r \leq a$ and $t \geq 0$;
- $-D u_{r}=\alpha\left(u-u_{0}\right)$ on $r=a$;
- $u$ is bounded as $r \rightarrow 0$;
- $u(r, 0)=u_{1}$ for $0 \leq r \leq a$.
(a) What are the physical dimensions of $D$ and $\alpha$ ? What is the steady-state solution? (The tranformation $u=v / r$ is helpful here.)
(b) Show that the eigenvalue relation has the form $\tan z=z /(1-\beta)$ for some constant $\beta$. Calculate $\beta$ explicitly, show that $\beta$ is dimensionless, and graph the eigenvalue relation. Express the solution as an eigenfunction expansion.

3. Let $I$ be the $m \times m$ identity matrix and $J$ the $m \times m$ matrix with 1 in every entry.
(a) Prove that $\operatorname{det}(q I+r J)=q^{m-1}(m r+q)$ for all real numbers $q$ and $r$.
(b) Assume that $q>0$ and $r>0$. If $A$ is an $m \times n$ matrix with $A A^{T}=q I+r J$, show that $m \leq n$.
4. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Show that for an appropriate choice of branch, the transformation

$$
z \mapsto\left(\prod_{i=1}^{n}\left(z-a_{i}\right)\right)^{1 / n}
$$

maps the upper half plane into itself. Describe the image of the real axis.
5. Show that

$$
2^{1-p} \leq \frac{x^{p}+y^{p}}{(x+y)^{p}} \leq 1
$$

for any $x>0, y>0, p \geq 1$.
6. The displacements $y_{1}(t)$ and $y_{2}(t)$ for a coupled mass-spring system subject to an external forcing $f(t)$ satisfy the ODE system

$$
\begin{aligned}
& m_{1} y_{1}^{\prime \prime}=-k_{1} y_{1}+k_{2}\left(y_{2}-y_{1}\right) \\
& m_{2} y_{2}^{\prime \prime}=-k_{2}\left(y_{2}-y_{1}\right)+f(t) .
\end{aligned}
$$

(a) Write this system in the form $y^{\prime \prime}=A y+g$ for some matrix $A$ and some vectors $y$ and $g$.
(b) If $m_{1}=m_{2}=1, k_{1}=5, k_{2}=6$, and $f(t)=0$, find the general solution to this system by first looking for a solution of the form $y=v e^{i \omega_{0} t}$ for some unknown vector $v$ and frequency $\omega_{0}$. (Here $i=\sqrt{-1}$.)
(c) Now let $f(t)=\sin (\omega t)$. Find a particular solution for this system of the form $y(t)=r \sin (\omega t)$, where $r$ is a vector independent of $t$ but dependent on $\omega$ that is to be found. Give a rough plot of $|r|$ versus $\omega^{2}$. For what values of $\omega$ will resonance occur?

