Pure Mathematics Qualifying Exam
 September 3, 2005

Part I

1. What sort of graph does the equation

$$
x^{2}-4 x y+8 y^{2}-4 y z+z^{2}=9
$$

have? You don't need to sketch the graph; a good description in words is enough.
2. Define the open upper half-plane $U=\{\Im z>0\}$ and the closed upper half-plane $\bar{U}=\{\Im z \geq 0\}$, where $\Im z$ denotes the imaginary part of z. Find a function $h(z)$ defined on \bar{U} that satisfies the following conditions:

- h is continuous on $\bar{U} \backslash\{-1,1\}$ and harmonic on U;
- $h(x)=1$ for $-1<x<1$, while $h(x)=0$ for $x<-1$ and for $x>1$;
- As $|z|$ tends to infinity with $z \in U$, the value $h(z)$ tends to zero.

3. For any continuous function $g:[-\pi, \pi] \rightarrow \mathbb{R}$, define

$$
\|g\|_{p}=\left[\int_{-\pi}^{\pi}|g(x)|^{p} d x\right]^{1 / p} \quad \text { for any real number } p \geq 1
$$

and

$$
\hat{g}(n)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} e^{-i n t} g(t) d t \quad \text { for any integer } n
$$

Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be a continuously differentiable real-valued function such that $f(-\pi)=f(\pi)$.
(a) Show that

$$
\left\|f^{\prime}\right\|_{2}^{2}=\sum_{n=-\infty}^{\infty} n^{2}|\hat{f}(n)|^{2}
$$

(You may quote standard results about Fourier series.)
(b) Prove that

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)| \leq \frac{1}{\sqrt{2 \pi}}\|f\|_{1}+\frac{\pi}{\sqrt{3}}\left\|f^{\prime}\right\|_{2}
$$

(You may use without proof the fact that $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.)
4. Let p_{1}, \ldots, p_{n} and q_{1}, \ldots, q_{n} be prime integers. Assume that q_{1}, \ldots, q_{n} are distinct. Show that $\sqrt[q_{1}]{p_{1}}+\cdots+\sqrt[q_{n}]{p_{n}}$ is an irrational number.
5. Suppose that A is a symmetric $n \times n$ positive definite matrix with real entries, that is, $x^{T} A x>0$ for every $x \in \mathbf{R}^{n} \backslash\{0\}$. Verify that there is an $n \times n$ matrix Q with real entries such that $Q Q^{T}=A$.
6. Using the calculus of residues (contour integration), evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{1+x^{2}} d x
$$

Pure Mathematics Qualifying Exam
 September 3, 2005
 Part II

1. Let \mathbf{F} be the vector field defined by

$$
\mathbf{F}(x, y, z)=\left(x^{2}+x\right) \mathbf{i}-(3 x z-y) \mathbf{j}+(4 z+1) \mathbf{k}
$$

Let S denote the surface of the sphere given by the equation $x^{2}+y^{2}+z^{2}=4$.
(a) Calculate the flux of the vector field \mathbf{F} outwards through S.
(b) Let S_{1} denote the part of S that lies above the $x y$-plane. Calculate the flux of \mathbf{F} upwards through S_{1}.
2. Suppose the symmetric group S_{n} acts transitively on a set X. Show that either $|X| \leq 2$ or $|X| \geq n$.
3. Let I be the $m \times m$ identity matrix and J the $m \times m$ matrix with 1 in every entry.
(a) Prove that $\operatorname{det}(q I+r J)=q^{m-1}(m r+q)$ for all real numbers q and r.
(b) Assume that $q>0$ and $r>0$. If A is an $m \times n$ matrix with $A A^{T}=q I+r J$, show that $m \leq n$.
4. Suppose that the function f is meromorphic for $|z|<1$, continuous at every point z with $|z|=1$, and satisfies $|f(z)|=1$ when $|z|=1$. Prove that f is a rational function.
5. Show that

$$
2^{1-p} \leq \frac{x^{p}+y^{p}}{(x+y)^{p}} \leq 1
$$

for any $x>0, y>0, p \geq 1$.
6. Let R be a commutative ring (with identity) and let I and J be two ideals in R. Suppose that $I+J=R$, that is, every element of R can be written as $i+j$ for some $i \in I$ and $j \in J$.
(a) Prove that $I \cdot J=I \cap J$.
(b) Prove that for any $a, b \in R$ there exists a $c \in R$ such that $c \equiv a(\bmod I)$ and $c \equiv b(\bmod J)$. (Here, the notation $x \equiv y(\bmod I)$ means that $x-y \in I$.)

