Applied Mathematics Qualifying Exam

September 2, 2006

Part I

Problem 1. Let B be the 13×13 matrix whose entry in the i th row and j th column equals $i+j$. Let V be the set of vectors $\mathbf{v} \in \mathbb{R}^{13}$ such that $B \mathbf{v}=\mathbf{0}$. Prove that V is a subspace of \mathbb{R}^{13}, and calculate the dimension of V.

Problem 2. Consider the Fourier sine series expansion of the function $f(x)$ defined by

$$
f(x)=1, \quad 0 \leq x \leq \pi
$$

Recall that the Fourier sine series has the form $f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n x)$ for all $x \in \mathbb{R}$.
(a) Calculate the coefficients b_{n} in this Fourier sine series, and find an infinite series expansion for $\pi / 4$.
(b) Let $S_{2 N-1}(x)=\sum_{n=1}^{2 N-1} b_{n} \sin (n x)$ denote the sum of the first $2 N-1$ terms in this Fourier sine series. Show that for all positive integers N,

$$
S_{2 N-1}(x)=\frac{2}{\pi} \int_{0}^{x} \frac{\sin (2 N u)}{\sin u} d u
$$

(c) For a given positive integer N, use the result of part (b) to determine the smallest positive real number $x=x_{N}$ at which $S_{2 N-1}(x)$ has a local maximum. How does this relate to the Gibbs phenomenon?

Problem 3. Let $f(x)$ be a real-valued function defined on $[0,1]$ that is differentiable up to and including its endpoints. Give a proof of the following limiting value:

$$
\lim _{n \rightarrow \infty}\left[(n+1) \int_{0}^{1} x^{n} f(x) d x\right]=f(1)
$$

Problem 4. Find the image of the unit disk $\{z:|z|<1\}$ under the mapping

$$
w=f(z)=i \log \left(\frac{i+z}{i-z}\right)
$$

where \log denotes the principal value of the logarithm function. What effect would choosing a different branch of the logarithm function, rather than Log, have on your answer?

Problem 5. Let $\mathbf{u} \in \mathbb{C}^{n}$ and $\mathbf{v} \in \mathbb{C}^{n}$ be column vectors, and consider the matrix A defined by $A=I+\mathbf{u v}^{*}$, where I is the $n \times n$ identity matrix. Here * denotes conjugate transpose.
(a) Characterize the pairs of vectors \mathbf{u} and \mathbf{v} for which A is singular.
(b) When A is non-singular, show that its inverse is of the form $A^{-1}=I+\alpha \mathbf{u v}^{*}$ for some scalar α (depending on \mathbf{u} and \mathbf{v}). Determine an explicit expression for α.
(c) When A is singular, what is the nullspace of A ?

Problem 6. Consider the following convection-diffusion equation for $u(x, t)$:

$$
\begin{gathered}
u_{t}+c u_{x}=D u_{x x}, \quad 0<x<\infty, \quad t>0 \\
u(0, t)=f(t), \quad u(x, 0)=0, \quad u \text { bounded as } x \rightarrow+\infty .
\end{gathered}
$$

Here $c>0$ and $D>0$ are constants.
(a) When $D=0$ (no diffusion), find $u(x, t)$ using the method of characteristics.
(b) When $D>0$, calculate the solution using Laplace transforms. Two relevant Laplace transform pairs are:

$$
\begin{aligned}
\mathcal{L}\left(e^{r t} f(t)\right)=F(s-r), \quad & F(s)=\mathcal{L}(f(t)) ; \\
\mathcal{L}^{-1}\left(e^{-\lambda \sqrt{s}}\right)=\frac{\lambda}{2 \sqrt{\pi} t^{3 / 2}} e^{-\lambda^{2} /(4 t)}, \quad & \lambda>0
\end{aligned}
$$

(c) Briefly discuss the main qualitative differences between the solutions for the case $D=0$ and for the case $D>0$ with regards to the speed of propagation of signals and the propagation of any discontinuities.

Applied Mathematics Qualifying Exam

September 2, 2006

Part II

Problem 1. For which $s \in \mathbb{R}$ does the infinite series

$$
f(s)=\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{s}}
$$

converge? Give a careful proof of your result.

Problem 2. Consider the following initial value problem for $y(t)$ on $t \geq 0$:

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+4 y^{\prime}+6 y=\sin (t)
$$

with $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$. By taking the Laplace transform and then examining the roots of some polynomial $p(s)$ in the right half-plane $\operatorname{Re}(s) \geq 0$, prove that $y(t)$ is bounded as $t \rightarrow \infty$. In addition, find constants a and b such that $y(t) \sim a \sin t+b \cos t$ as $t \rightarrow \infty$.

Problem 3. Given a positive integer K, consider the $2 K \times 2 K$ tridiagonal matrix \mathcal{M} defined by

$$
\mathcal{M}=\left[\begin{array}{ccccccc}
-b & a & & & & & \\
a & -b-d & d & & & & \\
& d & -b-d & a & & & \\
& & a & -b-d & \ddots & & \\
& & & \ddots & \ddots & d & \\
& & & & d & -b-d & a \\
& & & & & a & -b
\end{array}\right]
$$

Here the real numbers a, b, and d satisfy $b>a>0$ and $d>0$. Prove that \mathcal{M} is negative definite. (Hint: It may be convenient to decompose \mathcal{M} into the sum of two block-diagonal matrices).

Problem 4. Consider the following nonlinear system of ODE's for $x=x(t)$ and $y=y(t)$:

$$
x^{\prime}=x-y-x^{3}, \quad y^{\prime}=x+y-y^{3} .
$$

By first converting this system to polar coordinates, prove that there exists a periodic solution of this system inside the annulus $1<r<\sqrt{2}$, where $r=\sqrt{x^{2}+y^{2}}$.

Problem 5. Let x_{1}, \ldots, x_{N} be real variables. Find the maximum value of the second symmetric function

$$
s_{2}\left(x_{1}, \ldots, x_{N}\right)=\sum_{1 \leq i<j \leq n} \sum_{i} x_{j}
$$

subject to the constraints $x_{1} \geq 0, \ldots, x_{N} \geq 0$ and $x_{1}+x_{2}+\cdots+x_{N}=1$.

Problem 6. For any positive integer N, let C_{N} denote the boundary (oriented in the counterclockwise direction) of the rectangle with vertices at

$$
\left(N+\frac{1}{2}\right)(1+i),\left(N+\frac{1}{2}\right)(-1+i),\left(N+\frac{1}{2}\right)(-1-i), \text { and }\left(N+\frac{1}{2}\right)(1-i) .
$$

Define I_{N} by

$$
I_{N}=\int_{C_{N}} \frac{\pi}{z^{2} \sin (\pi z)} d z
$$

(a) Prove directly that $I_{N} \rightarrow 0$ as $N \rightarrow+\infty$.
(b) By using the residue theorem and the result in part (a), prove the identity

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}=-\frac{\pi^{2}}{12}
$$

