
Applied Mathematics Qualifying Exam
September 2, 2006

Part I

PROBLEM 1. Let B be the 13× 13 matrix whose entry in the ith row and jth column equals
i + j. Let V be the set of vectors v ∈ R13 such that Bv = 0. Prove that V is a subspace of
R13, and calculate the dimension of V.

PROBLEM 2. Consider the Fourier sine series expansion of the function f (x) defined by

f (x) = 1 , 0 ≤ x ≤ π .

Recall that the Fourier sine series has the form f (x) = ∑∞
n=1 bn sin(nx) for all x ∈ R.

(a) Calculate the coefficients bn in this Fourier sine series, and find an infinite series
expansion for π/4.

(b) Let S2N−1(x) = ∑2N−1
n=1 bn sin(nx) denote the sum of the first 2N − 1 terms in this

Fourier sine series. Show that for all positive integers N,

S2N−1(x) =
2
π

∫ x

0

sin(2Nu)
sin u

du .

(c) For a given positive integer N, use the result of part (b) to determine the smallest
positive real number x = xN at which S2N−1(x) has a local maximum. How does
this relate to the Gibbs phenomenon?

PROBLEM 3. Let f (x) be a real-valued function defined on [0, 1] that is differentiable up
to and including its endpoints. Give a proof of the following limiting value:

lim
n→∞

[
(n + 1)

∫ 1

0
xn f (x) dx

]
= f (1) .

PROBLEM 4. Find the image of the unit disk {z : |z| < 1} under the mapping

w = f (z) = i Log
(

i + z
i− z

)
,

where Log denotes the principal value of the logarithm function. What effect would
choosing a different branch of the logarithm function, rather than Log, have on your
answer?

(continued on back)



PROBLEM 5. Let u ∈ Cn and v ∈ Cn be column vectors, and consider the matrix A defined
by A = I + uv∗, where I is the n× n identity matrix. Here ∗ denotes conjugate transpose.

(a) Characterize the pairs of vectors u and v for which A is singular.

(b) When A is non-singular, show that its inverse is of the form A−1 = I + αuv∗ for
some scalar α (depending on u and v). Determine an explicit expression for α.

(c) When A is singular, what is the nullspace of A?

PROBLEM 6. Consider the following convection-diffusion equation for u(x, t):

ut + cux = Duxx , 0 < x < ∞ , t > 0 ,
u(0, t) = f (t) , u(x, 0) = 0 , u bounded as x → +∞ .

Here c > 0 and D > 0 are constants.

(a) When D = 0 (no diffusion), find u(x, t) using the method of characteristics.

(b) When D > 0, calculate the solution using Laplace transforms. Two relevant Laplace
transform pairs are:

L
(
ert f (t)

)
= F(s− r) , F(s) = L( f (t)) ;

L−1
(

e−λ
√

s
)

=
λ

2
√

πt3/2 e−λ2/(4t) , λ > 0 .

(c) Briefly discuss the main qualitative differences between the solutions for the case
D = 0 and for the case D > 0 with regards to the speed of propagation of signals
and the propagation of any discontinuities.
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Part II

PROBLEM 1. For which s ∈ R does the infinite series

f (s) =
∞

∑
n=2

1
n(log n)s

converge? Give a careful proof of your result.

PROBLEM 2. Consider the following initial value problem for y(t) on t ≥ 0:

y′′′ + 2y′′ + 4y′ + 6y = sin(t) ,

with y(0) = y′(0) = y′′(0) = 0. By taking the Laplace transform and then examining
the roots of some polynomial p(s) in the right half-plane Re(s) ≥ 0, prove that y(t) is
bounded as t → ∞. In addition, find constants a and b such that y(t) ∼ a sin t + b cos t as
t → ∞.

PROBLEM 3. Given a positive integer K, consider the 2K × 2K tridiagonal matrix M de-
fined by

M =



−b a
a −b− d d

d −b− d a

a −b− d . . .
. . . . . . d

d −b− d a
a −b


.

Here the real numbers a, b, and d satisfy b > a > 0 and d > 0. Prove that M is negative
definite. (Hint: It may be convenient to decomposeM into the sum of two block-diagonal
matrices).

(continued on back)



PROBLEM 4. Consider the following nonlinear system of ODE’s for x = x(t) and y = y(t):

x′ = x− y− x3 , y′ = x + y− y3 .

By first converting this system to polar coordinates, prove that there exists a periodic
solution of this system inside the annulus 1 < r <

√
2, where r =

√
x2 + y2.

PROBLEM 5. Let x1, . . . , xN be real variables. Find the maximum value of the second sym-
metric function

s2(x1, . . . , xN) = ∑ ∑
1≤i<j≤n

xixj

subject to the constraints x1 ≥ 0, . . . , xN ≥ 0 and x1 + x2 + · · ·+ xN = 1.

PROBLEM 6. For any positive integer N, let CN denote the boundary (oriented in the coun-
terclockwise direction) of the rectangle with vertices at(

N + 1
2

)
(1 + i),

(
N + 1

2

)
(−1 + i),

(
N + 1

2

)
(−1− i), and

(
N + 1

2

)
(1− i).

Define IN by

IN =
∫

CN

π

z2 sin(πz)
dz .

(a) Prove directly that IN → 0 as N → +∞.

(b) By using the residue theorem and the result in part (a), prove the identity

∞

∑
k=1

(−1)k

k2 = −π2

12
.


