Pure Mathematics Qualifying Exam

September 2, 2006

Part I

Problem 1. Let B be the 13×13 matrix whose entry in the i th row and j th column equals $i+j$. Let V be the set of vectors $\mathbf{v} \in \mathbb{R}^{13}$ such that $B \mathbf{v}=\mathbf{0}$. Prove that V is a subspace of \mathbb{R}^{13}, and calculate the dimension of V.

Problem 2. (a) Show that every group of order 99 is the direct product of a group of order 9 and a group of order 11.
(b) Show that any group of order 9 is abelian. Conclude that every group of order 99 must be abelian.
(c) How many different groups of order 99 are there, up to isomorphism?

Problem 3. Let $f(x)$ be a real-valued function defined on $[0,1]$ that is differentiable up to and including its endpoints. Give a proof of the following limiting value:

$$
\lim _{n \rightarrow \infty}\left[(n+1) \int_{0}^{1} x^{n} f(x) d x\right]=f(1)
$$

Problem 4. Find the image of the unit disk $\{z:|z|<1\}$ under the mapping

$$
w=f(z)=i \log \left(\frac{i+z}{i-z}\right)
$$

where Log denotes the principal value of the logarithm function. What effect would choosing a different branch of the logarithm function, rather than Log, have on your answer?

Problem 5. Let $\mathbf{u} \in \mathbb{C}^{n}$ and $\mathbf{v} \in \mathbb{C}^{n}$ be column vectors, and consider the matrix A defined by $A=I+\mathbf{u v}^{*}$, where I is the $n \times n$ identity matrix. Here * denotes conjugate transpose.
(a) Characterize the pairs of vectors \mathbf{u} and \mathbf{v} for which A is singular.
(b) When A is non-singular, show that its inverse is of the form $A^{-1}=I+\alpha \mathbf{u} \mathbf{v}^{*}$ for some scalar α (depending on \mathbf{u} and \mathbf{v}). Determine an explicit expression for α.
(c) When A is singular, what is the nullspace of A ?

Problem 6. In this problem, "irreducible polynomial" means "a polynomial with integer coefficients that is irreducible over $Q^{\prime \prime}$.
(a) Suppose $p(x)$ is an irreducible polynomial of degree n and has two roots r_{1}, r_{2} satisfying $r_{1} r_{2}=5$. Prove that n is even.
(b) If $p(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ is an irreducible polynomial of degree 4 with the property in part (a), prove that $d=25$ and $c=5 a$.

Pure Mathematics Qualifying Exam
 September 2, 2006

Part II

Problem 1. For which $s \in \mathbb{R}$ does the infinite series

$$
f(s)=\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{s}}
$$

converge? Give a careful proof of your result.

Problem 2. The dilogarithm function is defined by $f(z)=\sum_{k=1}^{\infty} z^{k} / k^{2}$ on the unit disk. Show that f can be extended to an analytic function on $\mathbb{C} \backslash[1, \infty)$. What is

$$
\lim _{\varepsilon \rightarrow 0+}(f(2+\varepsilon i)-f(2-\varepsilon i)) ?
$$

Hint: show that

$$
f(z)=-\int_{0}^{z} \log (1-w) \frac{d w}{w}
$$

Problem 3. How many different 4×4 matrices M, up to similarity, have the property that $M^{4}=M^{2}$ but $M^{3} \neq M$?

Problem 4. Prove or disprove: (a) $\mathbb{Z}[x]$ is a principal ideal domain; (b) $\mathbb{Z}[x]$ is a unique factorization domain.

Problem 5. Let x_{1}, \ldots, x_{N} be real variables. Find the maximum value of the second symmetric function

$$
s_{2}\left(x_{1}, \ldots, x_{N}\right)=\sum_{1 \leq i<j \leq n} \sum_{i} x_{j}
$$

subject to the constraints $x_{1} \geq 0, \ldots, x_{N} \geq 0$ and $x_{1}+x_{2}+\cdots+x_{N}=1$.

Problem 6. For any positive integer N, let C_{N} denote the boundary (oriented in the counterclockwise direction) of the rectangle with vertices at

$$
\left(N+\frac{1}{2}\right)(1+i),\left(N+\frac{1}{2}\right)(-1+i),\left(N+\frac{1}{2}\right)(-1-i), \text { and }\left(N+\frac{1}{2}\right)(1-i) .
$$

Define I_{N} by

$$
I_{N}=\int_{C_{N}} \frac{\pi}{z^{2} \sin (\pi z)} d z
$$

(a) Prove directly that $I_{N} \rightarrow 0$ as $N \rightarrow+\infty$.
(b) By using the residue theorem and the result in part (a), prove the identity

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}=-\frac{\pi^{2}}{12}
$$

