Fall 2007 Applied Qualifying Exam

Part I

1. Suppose f is a differentiable real-valued function such that $f^{\prime}(x)>f(x)$ for all x and $f(0)=0$. Prove that $f(x)>0$ for all $x>0$.
2. Let $x_{0}=0$ and

$$
x_{n+1}=\frac{1}{2+x_{n}}
$$

for $n=0,1,2, \ldots$. Prove that $x_{\infty}=\lim _{n \rightarrow \infty} x_{n}$ exists and find its value.
3. Show that there is no nonzero polynomial $P(u, v)$ in two variables with real coefficients such that

$$
P(x, \cos x)=0
$$

holds for all real x.
4. Let \mathbf{A} be the $n \times n$ matrix with all diagonal entries s and all off-diagonal entries t. For which complex values of s and t is this matrix not invertible? For each of these values, describe the nullspace of \mathbf{A} (including its dimension).
5. Show that the matrix

$$
\left[\begin{array}{llll}
0 & 5 & 1 & 0 \\
5 & 0 & 5 & 0 \\
1 & 5 & 0 & 5 \\
0 & 0 & 5 & 0
\end{array}\right]
$$

has two positive and two negative eigenvalues.
6. Given an inner product (\mathbf{x}, \mathbf{y}) for vectors \mathbf{x} and \mathbf{y} over the field of real numbers, prove the Cauchy-Schwartz inequality

$$
|(\mathbf{x}, \mathbf{y})| \leq|\mathbf{x}||\mathbf{y}|
$$

for all \mathbf{x} and \mathbf{y}. Hint: consider

$$
|\mathbf{x}+t \mathbf{y}|^{2}
$$

for real t. Using the above inequality, prove the triangle inequality

$$
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| .
$$

Fall 2007 Applied Qualifying Exam

Part II

1. Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin 3 x d x}{x^{2}+2 x+3}
$$

2. Let f be analytic in the disk $|z|<R$ where $|f(z)|<M$. Find a bound for

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right|
$$

in terms of R, M and $r<R$.
3. Consider the function

$$
f(z)=\left(z^{4}-9\right)^{1 / 4}
$$

Define a branch that is analytic for all $|z|<\sqrt{3}$ and that has the value

$$
f(0)=9^{1 / 4} e^{i \pi / 4}
$$

Sketch your branch cuts. For the branch you have chosen, calculate $f(i)$.
4. Consider the differential equation

$$
2 x y^{\prime \prime}+y^{\prime}+x^{2} y=0
$$

Find two linearly independent Frobenius series solutions to this equation, i.e. solutions in the form

$$
y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

where r and the a_{n} are to be determined. It is sufficient to find the first three nonzero terms in each series. What kind of initial conditions at $x=0$ are appropriate to determine a solution for $x>0$?
5. The function $T(x, y)$ satisfies the equation

$$
T_{x x}+T_{y y}=0
$$

in the semi-infinite strip $x \geq 0$ and $0 \leq y \leq 1$ with the boundary conditions:

$$
\begin{aligned}
T(x, y) & \rightarrow 0 \text { as } x \rightarrow \infty \\
T_{y} & =0 \text { on } y=0 \text { and } y=1 \text { for all } x \\
T(0, y) & =y \text { for } 0<y<1
\end{aligned}
$$

Find a series solution to this problem. Hint: begin by seeking separable solutions. Discuss briefly the behaviour of the solution near the origin. Is the solution continuous there? Differentiable?
6. A population model evolves according to the map

$$
x_{n+1}=f\left(x_{n}\right)=x_{n} e^{r\left(1-x_{n}\right)}
$$

with real parameter $r>0$. Find the fixed points and their stability. Show that a bifurcation occurs at $r=2$. What kind of bifurcation is it? Sketch the graph of the map for $r>1$ and describe the dynamics qualitatively.

