Qualifying Exam Pure Mathematics Part I.

Problem 1.

Prove that the matrix

$$
\left(\begin{array}{llll}
0 & 5 & 1 & 0 \\
5 & 0 & 5 & 0 \\
1 & 5 & 0 & 5 \\
0 & 0 & 5 & 0
\end{array}\right)
$$

has two positive and two negative eigenvalues (counting multiplicities).

Problem 2.

Prove that there exists only one automorphism of the field of real numbers; namely the identity automorphism.

Problem 3.

Let G be the abelian group on generators x, y and z, subject to the relations

$$
\begin{aligned}
& 32 x+33 y+26 z=0 \\
& 29 x+31 y+27 z=0 \\
& 27 x+28 y+26 z=0
\end{aligned}
$$

How many elements does G have? Is G cyclic?

Problem 4.

Let $x_{0}=0$ and

$$
x_{n+1}=\frac{1}{2+x_{n}}
$$

for $n=0,1,2, \ldots$. Prove that $x_{\infty}=\lim _{n \rightarrow \infty} x_{n}$ exists and find its value.

Problem 5.

Let \mathbf{A} be the $n \times n$ matrix with all diagonal entries s and all off-diagonal entries t. For which complex values of s and t is this matrix not invertible? For each of these values, describe the nullspace of \mathbf{A} (including its dimension).

Problem 6.

Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin 3 x d x}{x^{2}+2 x+3}
$$

Qualifying Exam Pure Mathematics Part II.

Problem 7.

Determine the Jordan canonical form of the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 4
\end{array}\right)
$$

Problem 8.

How many zeros does the function $f(z)=3 z^{100}-e^{z}$ have inside the unit circle (counting multiplicities)? Are the zeros distinct?

Problem 9.

Prove that $\cos 72^{\circ}$ is algebraic and find its minimal polynomial.

Problem 10.

Let the function f be analytic in the entire complex plane, and suppose that $f(z) / z \rightarrow 0$ as $|z| \rightarrow \infty$. Prove that f is constant.

Problem 11.

Prove that any group of order 77 is cyclic.

Problem 12.

Suppose f is a differentiable real valued function such that $f^{\prime}(x)>f(x)$ for all $x \in \mathbb{R}$ and $f(0)=0$. Prove that $f(x)>0$ for all positive x.

