Qualifying Exam Pure Mathematics Part I.

Problem 1.

Prove that the matrix

(0	5	1	0	
	5	0	5	0	
	1	5	0	5	
ĺ	0	0	5	0	Ϊ

has two positive and two negative eigenvalues (counting multiplicities).

Problem 2.

Prove that there exists only one automorphism of the field of real numbers; namely the identity automorphism.

Problem 3.

Let G be the abelian group on generators x, y and z, subject to the relations

32x	+	33y	+	26z	=	0
29x	+	31y	+	27z	=	0
27x	+	28y	+	26z	=	0

How many elements does G have? Is G cyclic?

Problem 4.

Let $x_0 = 0$ and

$$x_{n+1} = \frac{1}{2+x_n}$$

for $n = 0, 1, 2, \ldots$ Prove that $x_{\infty} = \lim_{n \to \infty} x_n$ exists and find its value.

Problem 5.

Let **A** be the $n \times n$ matrix with all diagonal entries s and all off-diagonal entries t. For which complex values of s and t is this matrix not invertible? For each of these values, describe the nullspace of **A** (including its dimension).

Problem 6. Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin 3x dx}{x^2 + 2x + 3} dx$$

Qualifying Exam Pure Mathematics Part II.

Problem 7.

Determine the Jordan canonical form of the matrix

1	2	3
0	4	5
$\sqrt{0}$	0	4/

Problem 8.

How many zeros does the function $f(z) = 3z^{100} - e^z$ have inside the unit circle (counting multiplicities)? Are the zeros distinct?

Problem 9.

Prove that $\cos 72^{\circ}$ is algebraic and find its minimal polynomial.

Problem 10.

Let the function f be analytic in the entire complex plane, and suppose that $f(z)/z \to 0$ as $|z| \to \infty$. Prove that f is constant.

Problem 11.

Prove that any group of order 77 is cyclic.

Problem 12.

Suppose f is a differentiable real valued function such that f'(x) > f(x) for all $x \in \mathbb{R}$ and f(0) = 0. Prove that f(x) > 0 for all positive x.