## Applied Mathematics Qualifying Exam

University of British Columbia

August 30, 2008

## Part I

1. Suppose f is a continuous real-valued function on [0, 1]. Show that

$$\int_0^1 f(x)x^2 \, dx = \frac{1}{3}f(\xi)$$

for some  $\xi \in [0, 1]$ .

- 2. Consider the vector field  $\mathbf{F}(x, y, z) = (\sin(x) + y^2)\mathbf{i} + (\cos(y) + z^2)\mathbf{j} + (e^{-z} + x^2)\mathbf{k}$ .
  - (a) Compute curl  $\mathbf{F}$  and div  $\mathbf{F}$ .
  - (b) Is **F** conservative? Justify your answer.
  - (c) Can  $\mathbf{F}$  be written as the curl of another vector field  $\mathbf{G}$ ? Justify your answer.
  - (d) Let C be the curve of intersection of the cylinder  $x^2 + y^2 = 2x$  and plane z = x oriented counterclockwise as viewed from above. Denote by S the part of the plane z = x that is bounded by C and oriented upward.
    - i. Parametrize C.
    - ii. Parametrize S.
    - iii. State Stokes' Theorem and use it to calculate  $\int_C \mathbf{F} \cdot d\mathbf{r}$ . [*Hint*: The following might be useful:  $\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta))$ .]
- 3. Let  $f : \mathbb{R}^2 \to \mathbb{R}$  have directional derivatives in all directions at the origin. Is f differentiable at the origin? Prove or give a counter-example.
- 4. Consider the  $n \times n$  matrix with a 7 in every entry of the first p rows and 4 in every entry of the last n p rows. Find its eigenvalues and eigenvectors.
- 5. Recall that matrices A and B are called **similar** provided that there exists an invertible matrix P such that  $A = PBP^{-1}$ . Also recall that **det** and **tr** are preserved under the similarity transformation  $B \rightarrow PBP^{-1}$ . For a and  $\epsilon$  real, define the matrix:

$$A_{\epsilon} = \left(\begin{array}{cc} a & \epsilon \\ 0 & a \end{array}\right).$$

- (a) Show that the family of matrices  $\mathcal{F} = \{A_{\epsilon} : \epsilon \neq 0\} \cup \{A_{\epsilon}^{T} : \epsilon \neq 0\}$  are all similar to one another. Note: the superscript <sup>T</sup> denotes matrix transpose.
- (b) Show that the following classes of real  $2 \times 2$  matrices are each a distance 0 away from the family  $\mathcal{F}$ :
  - the class of matrices with one eigenvalue with geometric multiplicity two,
  - the class of matrices with distinct real eigenvalues,
  - the class of matrices with non-real complex eigenvalues,

where distance is defined using the max norm  $(||A||_{max} = \max\{|a_{ij}|\}).$ 

6. Let *L* be a linear transformation from polynomials of degree less than or equal to two to the set of  $2 \times 2$  matrices  $(L : \mathcal{P}^2(\mathbb{R}, \mathbb{R}) \to \mathcal{M}(2, 2))$  given by

$$L(a_0 + a_1x + a_2x^2) = \begin{pmatrix} a_0 + a_2 & a_0 + a_1 \\ a_0 + a_2 & a_0 + a_1 \end{pmatrix}$$

- (a) Verify that this transformation is linear.
- (b) Find the matrix that represents the linear transformation  $\mathcal{L}$  with respect to the bases

$$\mathcal{V} = \{1, x, x^2\}$$
$$\mathcal{W} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

which are bases for  $\mathcal{P}^2(\mathbb{R},\mathbb{R})$  and  $\mathcal{M}(2,2)$  respectively.

(c) Find bases for the nullspace  $\mathcal{N}(L)$  and range  $\mathcal{R}(L)$ .

## Part II

1. Find the Laurent series expansion of  $f(z) = \frac{4}{(1+z)(3-z)}$  around  $z_0 = 0$  in the annulus 1 < |z| < 3.

- 2. Let  $f(z) = \left(\frac{\sin(3z)}{z^2} \frac{3}{z}\right) \cdot \left(\frac{z+1}{z+2}\right) \cdot \exp\left(\frac{1}{z-5}\right)$ .
  - (a) Find and classify all singularities of f.
  - (b) Evaluate  $I = \int_{\Gamma} f(z) dz$  where  $\Gamma$  is the positively oriented triangular loop with vertices at  $v_1 = -1 i$ ,  $v_2 = 1 i$ , and  $v_3 = i$ .
- 3. Compute the integral

$$\int_0^{2\pi} \frac{1}{2 + \cos(x)} dx$$

[Convert to an integral on the unit circle via a substitution, then use residue theory.]

4. Glycolysis is the enzymatic process by which glucose is broken down for the purpose of extracting energy. Consider the following simplified model of glycolysis proposed by Schnakenberg (1979):

$$\frac{dx}{dt} = x^2 y - x$$
$$\frac{dy}{dt} = a - x^2 y.$$

As the parameter a varies from  $-\infty$  to  $\infty$ , the structure of solutions near the steady state of the system changes. Determine the sequence of steady state classifications for increasing values of a (e.g. stable node-to-saddle-to-unstable node).

5. The voltage across the capacitor in an RLC circuit being driven by an oscillatory potential is given by the solution of the equation:

$$LC\frac{d^2v}{dt^2} + RC\frac{dv}{dt} + v = V_0\cos(wt)$$

where  $L, R, C, V_0$  and w, all non-negative, are physical parameters determined by the circuit components.

- (a) Calculate the so-called natural frequency of the circuit, when both R = 0 and  $V_0 = 0$ ?
- (b) Provide expressions for the change of variables,  $t \to \tau$  and  $v \to y$ , that simplifies the equation to:  $y'' + ay' + by = \cos(t)$  where ' denotes derivative with respect to  $\tau$ .
- (c) Calculate the general solution.
- (d) Show that the solution converges to  $v(t) = A\cos(t-\delta)$  as  $t \to \infty$  where  $A = 1/\sqrt{a^2 + (b-1)^2}$ and  $\delta$  satisfies  $\cos(\delta) = (b-1)A$ .
- (e) Returning to the original variables and parameters, what forcing frequency w maximizes the amplitude of the response?

6. Consider the physical problem of a long metal cylinder with annular cross-section. The temperature in Kelvin on the interior of the metal is described by the equation

$$u_t = D\left(u_{rr} + \frac{1}{r}u_r\right)$$

where r is the radial coordinate measured from the middle of the cylinder and we have assumed that u does not vary along the height of the cylinder. The inner and outer surfaces of the cylinder, located at r = a and r = b respectively, are treated such that the following boundary conditions apply:

$$-Du_r(a,t) = \alpha, \quad -Du_r(b,t) = \beta$$

where  $\alpha$  and  $\beta$  are both positive. Initially, u is given by u(r, 0) = f(r).

- (a) Provide a physical interpretation of the boundary conditions. What are the units on  $\alpha$  and  $\beta$ ?
- (b) What condition on  $\alpha$  and  $\beta$  must be satisfied for a steady state solution to exist? Assume it is satisfied and calculate the steady state.
- (c) If you were to solve the time-dependent problem by an eigenfunction decomposition, what equation would the eigenfunctions satisfy? You do not need to solve the equation.

