Applied Mathematics Qualifying Exam
 University of British Columbia
 August 30, 2008

Part I

1. Suppose f is a continuous real-valued function on $[0,1]$. Show that

$$
\int_{0}^{1} f(x) x^{2} d x=\frac{1}{3} f(\xi)
$$

for some $\xi \in[0,1]$.
2. Consider the vector field $\mathbf{F}(x, y, z)=\left(\sin (x)+y^{2}\right) \mathbf{i}+\left(\cos (y)+z^{2}\right) \mathbf{j}+\left(e^{-z}+x^{2}\right) \mathbf{k}$.
(a) Compute curl \mathbf{F} and $\operatorname{div} \mathbf{F}$.
(b) Is \mathbf{F} conservative? Justify your answer.
(c) Can \mathbf{F} be written as the curl of another vector field \mathbf{G} ? Justify your answer.
(d) Let C be the curve of intersection of the cylinder $x^{2}+y^{2}=2 x$ and plane $z=x$ oriented counterclockwise as viewed from above. Denote by S the part of the plane $z=x$ that is bounded by C and oriented upward.
i. Parametrize C.
ii. Parametrize S.
iii. State Stokes' Theorem and use it to calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
[Hint: The following might be useful: $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta))$.]
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ have directional derivatives in all directions at the origin. Is f differentiable at the origin? Prove or give a counter-example.
4. Consider the $n \times n$ matrix with a 7 in every entry of the first p rows and 4 in every entry of the last $n-p$ rows. Find its eigenvalues and eigenvectors.
5. Recall that matrices A and B are called similar provided that there exists an invertible matrix P such that $A=P B P^{-1}$. Also recall that det and $\mathbf{t r}$ are preserved under the similarity transformation $B \rightarrow P B P^{-1}$. For a and ϵ real, define the matrix:

$$
A_{\epsilon}=\left(\begin{array}{cc}
a & \epsilon \\
0 & a
\end{array}\right) .
$$

(a) Show that the family of matrices $\mathcal{F}=\left\{A_{\epsilon}: \epsilon \neq 0\right\} \cup\left\{A_{\epsilon}^{T}: \epsilon \neq 0\right\}$ are all similar to one another. Note: the superscript ${ }^{T}$ denotes matrix transpose.
(b) Show that the following classes of real 2×2 matrices are each a distance 0 away from the family \mathcal{F} :

- the class of matrices with one eigenvalue with geometric multiplicity two,
- the class of matrices with distinct real eigenvalues,
- the class of matrices with non-real complex eigenvalues,
where distance is defined using the max norm $\left(\|A\|_{\max }=\max \left\{\left|a_{i j}\right|\right\}\right)$.

6. Let L be a linear transformation from polynomials of degree less than or equal to two to the set of 2×2 matrices $\left(L: \mathcal{P}^{2}(\mathbb{R}, \mathbb{R}) \rightarrow \mathcal{M}(2,2)\right)$ given by

$$
L\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(\begin{array}{ll}
a_{0}+a_{2} & a_{0}+a_{1} \\
a_{0}+a_{2} & a_{0}+a_{1}
\end{array}\right)
$$

(a) Verify that this transformation is linear.
(b) Find the matrix that represents the linear transformation \mathcal{L} with respect to the bases

$$
\begin{aligned}
\mathcal{V} & =\left\{1, x, x^{2}\right\} \\
\mathcal{W} & =\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

which are bases for $\mathcal{P}^{2}(\mathbb{R}, \mathbb{R})$ and $\mathcal{M}(2,2)$ respectively.
(c) Find bases for the nullspace $\mathcal{N}(L)$ and range $\mathcal{R}(L)$.

Part II

1. Find the Laurent series expansion of $f(z)=\frac{4}{(1+z)(3-z)}$ around $z_{0}=0$ in the annulus $1<|z|<3$.
2. Let $f(z)=\left(\frac{\sin (3 z)}{z^{2}}-\frac{3}{z}\right) \cdot\left(\frac{z+1}{z+2}\right) \cdot \exp \left(\frac{1}{z-5}\right)$.
(a) Find and classify all singularities of f.
(b) Evaluate $I=\int_{\Gamma} f(z) d z$ where Γ is the positively oriented triangular loop with vertices at $v_{1}=-1-i, v_{2}=1-i$, and $v_{3}=i$.
3. Compute the integral

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos (x)} d x
$$

[Convert to an integral on the unit circle via a substitution, then use residue theory.]
4. Glycolysis is the enzymatic process by which glucose is broken down for the purpose of extracting energy. Consider the following simplified model of glycolysis proposed by Schnakenberg (1979):

$$
\begin{aligned}
& \frac{d x}{d t}=x^{2} y-x \\
& \frac{d y}{d t}=a-x^{2} y
\end{aligned}
$$

As the parameter a varies from $-\infty$ to ∞, the structure of solutions near the steady state of the system changes. Determine the sequence of steady state classifications for increasing values of a (e.g. stable node-to-saddle-to-unstable node).
5. The voltage across the capacitor in an RLC circuit being driven by an oscillatory potential is given by the solution of the equation:

$$
L C \frac{d^{2} v}{d t^{2}}+R C \frac{d v}{d t}+v=V_{0} \cos (w t)
$$

where L, R, C, V_{0} and w, all non-negative, are physical parameters determined by the circuit components.
(a) Calculate the so-called natural frequency of the circuit, when both $R=0$ and $V_{0}=0$?
(b) Provide expressions for the change of variables, $t \rightarrow \tau$ and $v \rightarrow y$, that simplifies the equation to: $y^{\prime \prime}+a y^{\prime}+b y=\cos (t)$ where ${ }^{\prime}$ denotes derivative with respect to τ.
(c) Calculate the general solution.
(d) Show that the solution converges to $v(t)=A \cos (t-\delta)$ as $t \rightarrow \infty$ where $A=1 / \sqrt{a^{2}+(b-1)^{2}}$ and δ satisfies $\cos (\delta)=(b-1) A$.
(e) Returning to the original variables and parameters, what forcing frequency w maximizes the amplitude of the response?
6. Consider the physical problem of a long metal cylinder with annular cross-section. The temperature in Kelvin on the interior of the metal is described by the equation

$$
u_{t}=D\left(u_{r r}+\frac{1}{r} u_{r}\right)
$$

where r is the radial coordinate measured from the middle of the cylinder and we have assumed that u does not vary along the height of the cylinder. The inner and outer surfaces of the cylinder, located at $r=a$ and $r=b$ respectively, are treated such that the following boundary conditions apply:

$$
-D u_{r}(a, t)=\alpha, \quad-D u_{r}(b, t)=\beta
$$

where α and β are both positive. Initially, u is given by $u(r, 0)=f(r)$.
(a) Provide a physical interpretation of the boundary conditions. What are the units on α and β ?
(b) What condition on α and β must be satisfied for a steady state solution to exist? Assume it is satisfied and calculate the steady state.
(c) If you were to solve the time-dependent problem by an eigenfunction
 decomposition, what equation would the eigenfunctions satisfy? You do not need to solve the equation.

