Pure Mathematics Qualifying Exam
 University of British Columbia
 August 30, 2008

Part I

1. Suppose f is a continuous real-valued function on $[0,1]$. Show that

$$
\int_{0}^{1} f(x) x^{2} d x=\frac{1}{3} f(\xi)
$$

for some $\xi \in[0,1]$.
2. Let $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}, \cdots$ be non-negative continuous functions on $[0,1]$ such that the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} \varphi_{n}(x) d x
$$

exists for every $k=0,1,2, \cdots$. Show that the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \varphi_{n}(x) d x
$$

exists for every continuous function f on $[0,1]$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ have directional derivatives in all directions at the origin. Is f differentiable at the origin? Prove or give a counter-example.
4. Consider the $n \times n$ matrix with a 7 in every entry of the first p rows and 4 in every entry of the last $n-p$ rows. Find its eigenvalues and eigenvectors.
5. Recall that matrices A and B are called similar provided that there exists an invertible matrix P such that $A=P B P^{-1}$. Also recall that det and $\mathbf{t r}$ are preserved under the similarity transformation $B \rightarrow P B P^{-1}$. For a and ϵ real, define the matrix:

$$
A_{\epsilon}=\left(\begin{array}{cc}
a & \epsilon \\
0 & a
\end{array}\right) .
$$

(a) Show that the family of matrices $\mathcal{F}=\left\{A_{\epsilon}: \epsilon \neq 0\right\} \cup\left\{A_{\epsilon}^{T}: \epsilon \neq 0\right\}$ are all similar to one another. Note: the superscript ${ }^{T}$ denotes matrix transpose.
(b) Show that the following classes of real 2×2 matrices are each a distance 0 away from the family \mathcal{F} :

- the class of matrices with one eigenvalue with geometric multiplicity two,
- the class of matrices with distinct real eigenvalues,
- the class of matrices with non-real complex eigenvalues,
where distance is defined using the max norm $\left(\|A\|_{\max }=\max \left\{\left|a_{i j}\right|\right\}\right)$.

6. Let L be a linear transformation from polynomials of degree less than or equal to two to the set of 2×2 matrices $\left(L: \mathcal{P}^{2}(\mathbb{R}, \mathbb{R}) \rightarrow \mathcal{M}(2,2)\right)$ given by

$$
L\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(\begin{array}{ll}
a_{0}+a_{2} & a_{0}+a_{1} \\
a_{0}+a_{2} & a_{0}+a_{1}
\end{array}\right)
$$

(a) Verify that this transformation is linear.
(b) Find the matrix that represents the linear transformation \mathcal{L} with respect to the bases

$$
\begin{aligned}
\mathcal{V} & =\left\{1, x, x^{2}\right\} \\
\mathcal{W} & =\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

which are bases for $\mathcal{P}^{2}(\mathbb{R}, \mathbb{R})$ and $\mathcal{M}(2,2)$ respectively.
(c) Find bases for the nullspace $\mathcal{N}(L)$ and range $\mathcal{R}(L)$.

Part II

1. Find the Laurent series expansion of $f(z)=\frac{4}{(1+z)(3-z)}$ around $z_{0}=0$ in the annulus $1<|z|<3$.
2. Let $f(z)=\left(\frac{\sin (3 z)}{z^{2}}-\frac{3}{z}\right) \cdot\left(\frac{z+1}{z+2}\right) \cdot \exp \left(\frac{1}{z-5}\right)$.
(a) Find and classify all singularities of f.
(b) Evaluate $I=\int_{\Gamma} f(z) d z$ where Γ is the positively oriented triangular loop with vertices at $v_{1}=-1-i, v_{2}=1-i$, and $v_{3}=i$.
3. Compute the integral

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos (x)} d x
$$

[Convert to an integral on the unit circle via a substitution, then use residue theory.]
4. Suppose E is an algebraic field extension of a field F. Suppose R is a subring of E which contains F. Show that R is a field.
5. Let $\mathbf{G L}_{3}(\mathbb{Z})$ denote the group of invertible 3×3-matrices with integer entries. Show that $\mathbf{G L}_{3}(\mathbb{Z})$ has no element of order 7 .
6. Show that any group of order 765 is abelian.

