Pure Mathematics Qualifying Exam University of British Columbia September 4, 2009.

Part I

1. (a) Let

$$I = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \quad J = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right],$$

and verify that for all real numbers x_1, y_1, x_2, y_2 we have

$$(x_1I + y_1J)(x_2I + y_2J) = (x_1x_2 - y_1y_2)I + (x_1y_2 + x_2y_1)J.$$

(b) Find A^n for any integer n, if

$$A = \begin{bmatrix} 1/4 & -\sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix}.$$

- 2. Prove that the equation $XY YX = I_n$ has no solution (where X, Y are unknown real $n \times n$ -matrices, and I_n is the identity matrix).
- 3. A nonzero matrix A is called nilpotent if there exists a positive integer n such that $A^n = 0$. Two matrices A and B are called similar if they can be obtained from one another by a change of basis.
 - (a) Prove that if A is nilpotent and B is similar to A, then B is also nilpotent.
 - (b) Find a set of representatives of all equivalence classes of nilpotent 3×3 -matrices with complex entries, where we declare two matrices equivalent if they are similar. (You may want to solve this question for 2×2 -matrices first).
- 4. Define the Fourier transform pair to be:

$$\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$$
 and $f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{f}(k)e^{ikx}dx.$

(a) Use contour integration to calculate the Fourier transform $\hat{f}(k)$ for

$$f(x) = \frac{1}{(x^2 + a^2)^2},$$

where $a \in \mathbb{R}$ is a constant.

(b) Calculate the inverse Fourier transform f(x) for

$$\hat{f}(k) = \frac{1}{(k^2 + a^2)^2}$$

where $a \in \mathbb{R}$ is a constant.

5. Use a keyhole-shaped contour to evaluate the integral.

$$I = \int_0^\infty \frac{dx}{\sqrt{x}(x^2 + 1)}$$

- 6. Let D be the circle of radius 4 centred at the point (0,5) in the x y plane. Find a function $\phi(x, y)$ that satisfies the following restrictions:
 - ϕ is harmonic in the upper half-plane exterior to D;
 - $\phi = 1$ on D;
 - $\phi = 0$ on the *x*-axis.

Hint: Consider a conformal map of the form $w = \frac{z+\alpha}{z+\beta}$.

Part II

- 1. Suppose f is a continuous function on \mathbb{R} such that $|f(x) f(y)| \ge |x y|$ for all x and y. Show that the range of f is all of \mathbb{R} .
- 2. For every $a \in \mathbb{R}$, determine whether the integral

$$\iint_D (x^4 + y^2)^a \, dA$$

is finite, where D is the square $\{(x, y) \mid -1 \le x \le 1, -1 \le y \le 1\}$.

- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function and assume that f has a local minimum at 0. Prove that there is a disc centered on the *y*-axis which lies above the graph of f and touches the graph of f at (0, f(0)).
- 4. (a) What is the smallest integer n such that there exists a non-abelian group of order n?
 - (b) Give an example of a number n > 1000 and not a prime, such that there exists only one group of order n up to isomorphism. How many subgroups does the group in your example have?
- 5. Let E be the splitting field of the polynomial $(x^2 3)(x^2 5)$ over \mathbb{Q} .
 - (a) Find the degree $[E : \mathbb{Q}]$.
 - (b) Find an element $\alpha \in E$ such that $E = \mathbb{Q}(\alpha)$.
 - (c) Find the Galois group $\operatorname{Gal}(E/\mathbb{Q})$.
- 6. Let $I = \{f \in \mathbb{C}[x, y] \mid f(1, 1) = 0\}$. Prove that I is a maximal ideal in the ring $\mathbb{C}[x, y]$.

Find a minimal set of generators for I.