Pure Mathematics Qualifying Exam

University of British Columbia
September 4, 2009.

Part I

1. (a) Let

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

and verify that for all real numbers $x_{1}, y_{1}, x_{2}, y_{2}$ we have

$$
\left(x_{1} I+y_{1} J\right)\left(x_{2} I+y_{2} J\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right) I+\left(x_{1} y_{2}+x_{2} y_{1}\right) J .
$$

(b) Find A^{n} for any integer n, if

$$
A=\left[\begin{array}{cc}
1 / 4 & -\sqrt{3} / 4 \\
\sqrt{3} / 4 & 1 / 4
\end{array}\right]
$$

2. Prove that the equation $X Y-Y X=I_{n}$ has no solution (where X, Y are unknown real $n \times n$-matrices, and I_{n} is the identity matrix).
3. A nonzero matrix A is called nilpotent if there exists a positive integer n such that $A^{n}=0$. Two matrices A and B are called similar if they can be obtained from one another by a change of basis.
(a) Prove that if A is nilpotent and B is similar to A, then B is also nilpotent.
(b) Find a set of representatives of all equivalence classes of nilpotent 3×3-matrices with complex entries, where we declare two matrices equivalent if they are similar. (You may want to solve this question for 2×2-matrices first).
4. Define the Fourier transform pair to be:

$$
\hat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x \quad \text { and } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d x
$$

(a) Use contour integration to calculate the Fourier transform $\hat{f}(k)$ for

$$
f(x)=\frac{1}{\left(x^{2}+a^{2}\right)^{2}}
$$

where $a \in \mathbb{R}$ is a constant.
(b) Calculate the inverse Fourier transform $f(x)$ for

$$
\hat{f}(k)=\frac{1}{\left(k^{2}+a^{2}\right)^{2}}
$$

where $a \in \mathbb{R}$ is a constant.
5. Use a keyhole-shaped contour to evaluate the integral.

$$
I=\int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+1\right)}
$$

6. Let D be the circle of radius 4 centred at the point $(0,5)$ in the $x-y$ plane. Find a function $\phi(x, y)$ that satisfies the following restrictions:

- ϕ is harmonic in the upper half-plane exterior to D;
- $\phi=1$ on D;
- $\phi=0$ on the x-axis.

Hint: Consider a conformal map of the form $w=\frac{z+\alpha}{z+\beta}$.

Part II

1. Suppose f is a continuous function on \mathbb{R} such that $|f(x)-f(y)| \geq|x-y|$ for all x and y. Show that the range of f is all of \mathbb{R}.
2. For every $a \in \mathbb{R}$, determine whether the integral

$$
\iint_{D}\left(x^{4}+y^{2}\right)^{a} d A
$$

is finite, where D is the square $\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function and assume that f has a local minimum at 0 . Prove that there is a disc centered on the y-axis which lies above the graph of f and touches the graph of f at ($0, f(0)$).
4. (a) What is the smallest integer n such that there exists a non-abelian group of order n ?
(b) Give an example of a number $n>1000$ and not a prime, such that there exists only one group of order n up to isomorphism. How many subgroups does the group in your example have?
5. Let E be the splitting field of the polynomial $\left(x^{2}-3\right)\left(x^{2}-5\right)$ over \mathbb{Q}.
(a) Find the degree $[E: \mathbb{Q}]$.
(b) Find an element $\alpha \in E$ such that $E=\mathbb{Q}(\alpha)$.
(c) Find the Galois group $\operatorname{Gal}(E / \mathbb{Q})$.
6. Let $I=\{f \in \mathbb{C}[x, y] \mid f(1,1)=0\}$. Prove that I is a maximal ideal in the ring $\mathbb{C}[x, y]$.
Find a minimal set of generators for I.

