Mathematics Qualifying Exam

University of British Columbia
September 2, 2010

Part I: Real and Complex Analysis (Pure and Applied Exam)

1. a) Find all continuously differentiable vector fields $\mathbf{F}(x, y, z)$ from \mathbb{R}^{3} to \mathbb{R}^{3} with the property that $\oint_{C} \mathbf{F}(x, y, z) \times d \mathbf{r}=\mathbf{0}$ for all closed curves C in \mathbb{R}^{3}.
b) Show that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.
2. Consider $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ where \mathbb{R}^{n} is the n-dimensional Euclidean space with the standard Euclidean metric. Suppose that for all k large enough, T^{k} satisfies:

$$
\left|T^{k} x-T^{k} y\right| \leq r|x-y|
$$

where $r \in(0,1)$. Show that T has a unique fixed point.
3. a) Show that $I=\int_{0}^{\infty} \frac{\sin x}{x} d x$ converges.
b) Evaluate I.
c) For which real values of p and q does $\int_{0}^{\infty} \frac{\sin x}{|1-x|^{q} x^{p}} d x$ converge? Justify your answer.
4. Consider the function $f(z)=e^{\frac{z+1}{z-1}}$. Find all z for which
a) $|f(z)|=1$;
b) $|f(z)|<1$.
5. Let $f(z)=\frac{1}{(2 z-1)(z-2)}$.
a) Give the first three nonzero terms for the Laurent expansion of $f(z)$ about $\frac{1}{2}$.
b) Give the first three nonzero terms for the Laurent expansion of $f(z)$ about 0 , valid for small $|z|$. Give the region of convergence for the full expansion.
c) Give the first three nonzero terms for the Laurent expansion of $f(z)$ about 0 , valid for large $|z|$. Give the region of convergence for the full expansion
d) Compute $f^{\prime \prime}(0)$.
e) Evaluate $\oint_{|z|=\frac{3}{2}} f(z) d z$.
f) Evaluate $\oint_{|z|=79} f(z) d z$.
6. Let H^{+}be the upper half plane. For $z \in \mathrm{H}^{+}$, define the function

$$
h_{z}(\zeta)=\frac{1}{2 \pi i}\left(\frac{1}{\zeta-z}-\frac{1}{\zeta-\bar{z}}\right) \quad \text { for all } \zeta \in \mathrm{H}^{+}
$$

then h_{z} is analytic on H^{+}except for a simple pole at z. Suppose that f is a bounded analytic function on $\mathrm{H}^{+} \cup \mathbb{R}$. Prove that

$$
\int_{-\infty}^{\infty} f(t) h_{z}(t) d t=f(z)
$$

Mathematics Qualifying Exam

University of British Columbia
September 2, 2010

Part II: Linear Algebra and Differential Equations (Applied Exam)

1. A matrix $A \in \mathbb{R}^{n \times n}$ is called positive definite if $x^{\top} A x>0$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$. Show:
a) If $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, then all its eigenvalues are positive.
b) If $A \in \mathbb{R}^{n \times n}$ is positive definite and $X \in \mathbb{R}^{n \times k}$ has rank k, then $X^{\top} A X$ is also positive definite.
c) Let A be the symmetric matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right]
$$

Verify that if A is positive definite, then

$$
a_{11}>0, \quad a_{22}>0, \quad\left|a_{12}\right|<\frac{a_{11}+a_{22}}{2}
$$

2. The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is defined by $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$.
a) Show that if $A \in \mathbb{R}^{n \times n}$ and $A^{\prime} \in \mathbb{R}^{n \times n}$ are similar, then $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\prime}\right)$.
b) For any matrix $A \in \mathbb{R}^{n \times n}$, there holds $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$. Prove this identity in the case where A is diagonalizable.
3. Let A be a square matrix with all diagonal entries equal to 2 , all entries directly above or below the main diagonal equal to 1 , and all other entries equal to 0 . Show that every eigenvalue of A is a real number strictly between 0 and 4 .

Please turn over
4. Consider the ODE

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=\sin ^{2} t, \quad b=\text { const }, c=\text { const. } \tag{1}
\end{equation*}
$$

a) For which values of the constants b and c does (1) have a periodic solution, i.e., (1) has a particular solution $y_{p}(t)$ with the property that $y_{p}(t)=y_{p}(t+T)$ for some constant T ?
b) Find the period of the periodic solution when a periodic solution of (1) exists, i.e., find the smallest T with the property that $y_{p}(t)=y_{p}(t+T)$.
c) Consider the situation when (1) has a periodic solution $y_{p}(t)$. Let $y(t)=Y(t)$ be the solution of the initial value problem

$$
\frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=\sin ^{2} t, \quad y(0)=79.333333336, y^{\prime}(0)=2.2222221
$$

For which values of b and c is it true that $\lim _{t \rightarrow \infty}\left|Y(t)-y_{p}(t)\right|=0$?
5. Solve the initial value problem

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-y \\
& \frac{d y}{d t}=4 x-3 y+e^{t}
\end{aligned}
$$

where $x(0)=1, y(0)=0$.
6. a) Bacteria growth can be modelled by the reaction-diffusion equation

$$
\begin{aligned}
u_{t} & =\alpha^{2} u_{x x}+\beta^{2} u, \quad 0<x<1, t>0, \\
u(0, t) & =u(1, t)=0, \\
u(x, 0) & =f(x)
\end{aligned}
$$

where $u(x, t)$ is the bacteria concentration, α^{2} is the diffusion rate, β^{2} the growth rate, and $f(x)$ a given initial concentration.
a1) Find all values of the constants α and β for which the bacteria concentration will not decay to zero as $t \rightarrow \infty$.
a2) Find all values of the constants α and β for which $\lim _{t \rightarrow \infty} u(x, t)=0$ for any initial datum $f(x)$.
b) The temperature $u(x, t)$ in a one-dimensional rod satisfies the heat equation

$$
\begin{aligned}
u_{t} & =\alpha^{2} u_{x x}, \quad 0<x<L, t>0 \\
u(x, 0) & =f(x)
\end{aligned}
$$

for a given initial temperature distribution $f(x)$ and a thermal diffusivity parameter α^{2}. Determine the steady-state temperature $\lim _{t \rightarrow \infty} u(x, t)$ for the following boundary conditions:
b1) $u(0, t)=T_{1}$ and $u(L, t)=T_{2}$ for given constants T_{1} and T_{2}.
b2) $u_{x}(0, t)=u_{x}(L, t)=0$.

