Algebra Qualifying Exam

University of British Columbia

September 1, 2012

1. Consider the matrix

$$
A=\frac{1}{3}\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
2 / 3 & 1 / 3 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 2 / 3
\end{array}\right)
$$

(a) Determine the eigenvalues of A.
(b) Find eigenvectors correspoding to each of the eigenvalues from part (a).
(c) Determine

$$
\lim _{n \rightarrow \infty} A^{n}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

2. Let V be a finite-dimensional inner product space, and let W_{1}, \ldots, W_{k} be subspaces of V. Let W be the subspace generated (spanned) by W_{1}, \ldots, W_{k}. Show that $W^{\perp}=\bigcap_{i=1}^{k} W_{i}^{\perp}$. Here W^{\perp} denotes the orthogonal complement to W in V with respect to the inner product.
3. For $n \geq 1$ let $V_{n}=\mathbb{R}[x]^{<n}$ be the vector space of real polynomials of degree less than n. For an integer k define a linear functional $\varphi_{k} \in V_{n}^{*}$ by $\varphi_{k}(f)=f(k)$.
(a) Show that $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is a basis for the dual space V_{n}^{*}.
(b) Let $D: V_{3} \rightarrow V_{3}$ be the differentiation map (so that $\left.D\left(x^{2}+2 x+1\right)=2 x+2\right)$. Find the matrix of the adjoint $D^{*}: V_{3}^{*} \rightarrow V_{3}^{*}$ in the basis from part (a).
4. Let S_{n} denote the symmetric group on the n letters $\{1,2, \ldots, n\}$.
(a) Let $\tau \in S_{5}$ be the permutation with cycle representation (124). Find all permutations $\sigma \in S_{5}$ which commute with τ (recall that two elements σ, τ of a group commute if $\tau \sigma=\sigma \tau$).
(b) Let G be a group, H a subgroup. Recall that the normalizer of H in G is the subgroup $N_{G}(H)=\left\{x \in G \mid x H x^{-1}=H\right\}$. Now let H_{1}, H_{2} be subgroups of G that are conjugate to each other. Show that their normalizers $N_{G}\left(H_{1}\right), N_{G}\left(H_{2}\right)$ are also conjugate to each other.
(c) Show that all subgroups of S_{4} of order 6 are conjugate to one another. (Hint: one approach is to apply part (b))
5. For parts (b),(c),(d) of the problem, let f be the polynomial $x^{4}+5 x^{2}-3$.
(a) Show that $x^{4}+2 \in \mathbb{F}_{5}[x]$ is irreducible.
(b) Show that $f \in \mathbb{Q}[x]$ is irreducible.
(c) Let $\Sigma \subset \mathbb{C}$ be the splitting field of f. Determine its degree $[\Sigma: \mathbb{Q}]$.
(d) Determine the isomorphism class of the Galois group of f.
6. Note: the two parts are independent.
(a) Let R a commutative ring with identity and let S be a subring of R. Let P be a proper prime ideal of R. Show that $P \cap S$ is a proper prime ideal of S. You need to show that $P \cap S$ is an ideal of S, that it is prime, and that it is not all of S.
(b) Show that every group of order n can be generated by at most $\log _{2} n$ elements.
