Algebra Qualifying Exam

University of British Columbia

September 1, 2012

1. Consider the matrix

$$A = \frac{1}{3} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 2/3 & 1/3 & 0 \\ 1/3 & 1/3 & 1/3 \\ 0 & 1/3 & 2/3 \end{pmatrix} .$$

- (a) Determine the eigenvalues of A.
- (b) Find eigenvectors corresponding to each of the eigenvalues from part (a).
- (c) Determine

$$\lim_{n \to \infty} A^n \begin{pmatrix} 1\\0\\0 \end{pmatrix}.$$

- 2. Let V be a finite-dimensional inner product space, and let W_1, \ldots, W_k be subspaces of V. Let W be the subspace generated (spanned) by W_1, \ldots, W_k . Show that $W^{\perp} = \bigcap_{i=1}^k W_i^{\perp}$. Here W^{\perp} denotes the orthogonal complement to W in V with respect to the inner product.
- 3. For $n \ge 1$ let $V_n = \mathbb{R}[x]^{<n}$ be the vector space of real polynomials of degree less than n. For an integer k define a linear functional $\varphi_k \in V_n^*$ by $\varphi_k(f) = f(k)$.
 - (a) Show that $\{\varphi_1, \ldots, \varphi_n\}$ is a basis for the dual space V_n^* .
 - (b) Let $D: V_3 \to V_3$ be the differentiation map (so that $D(x^2 + 2x + 1) = 2x + 2$). Find the matrix of the adjoint $D^*: V_3^* \to V_3^*$ in the basis from part (a).
- 4. Let S_n denote the symmetric group on the *n* letters $\{1, 2, \ldots, n\}$.
 - (a) Let $\tau \in S_5$ be the permutation with cycle representation (124). Find all permutations $\sigma \in S_5$ which commute with τ (recall that two elements σ, τ of a group commute if $\tau \sigma = \sigma \tau$).
 - (b) Let G be a group, H a subgroup. Recall that the normalizer of H in G is the subgroup $N_G(H) = \{x \in G \mid xHx^{-1} = H\}$. Now let H_1, H_2 be subgroups of G that are conjugate to each other. Show that their normalizers $N_G(H_1), N_G(H_2)$ are also conjugate to each other.

- (c) Show that all subgroups of S_4 of order 6 are conjugate to one another. (*Hint*: one approach is to apply part (b))
- 5. For parts (b),(c),(d) of the problem, let f be the polynomial $x^4 + 5x^2 3$.
 - (a) Show that $x^4 + 2 \in \mathbb{F}_5[x]$ is irreducible.
 - (b) Show that $f \in \mathbb{Q}[x]$ is irreducible.
 - (c) Let $\Sigma \subset \mathbb{C}$ be the splitting field of f. Determine its degree $[\Sigma : \mathbb{Q}]$.
 - (d) Determine the isomorphism class of the Galois group of f.
- 6. Note: the two parts are independent.
 - (a) Let R a commutative ring with identity and let S be a subring of R. Let P be a proper prime ideal of R. Show that $P \cap S$ is a proper prime ideal of S. You need to show that $P \cap S$ is an ideal of S, that it is prime, and that it is not all of S.
 - (b) Show that every group of order n can be generated by at most $\log_2 n$ elements.