Analysis Qualifying Exam

University of British Columbia

September $1^{\text {st }} 2012$

1. (a) Let $h:[-\pi, \pi] \rightarrow \mathbb{R}$ be defined by $h(x)=|x|$. Compute the Fourier series of h. Note - not the Fourier transform.
(b) Let $E=\left\{v \in \mathbb{R}^{3}\right.$ s.t. $\left.0<|v| \leq 1\right\}$ be the unit ball centred at the origin, but not including the origin. Let

$$
\mathbf{F}(x, y, z)=\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) .
$$

Prove that $\operatorname{div} \mathbf{F}=0$ on E.
(c) Continuing from (b), show that there is no vector function $\mathbf{G}=\mathbf{G}(x, y, z)$ which satisfies curl $\mathbf{G}=\mathbf{F}$ in the domain E.
Hint: Split the surface and apply Stokes' Theorem.
2. Your answers to this question should probably contain ε 's.
(a) Prove the following (the Weierstrass M-test):

Let A be a set, and suppose that $\left\{f_{n}\right\}$ is a sequence of functions from $A \rightarrow \mathbb{R}$. Further let $\left\{M_{n}\right\}$ be a sequence of positive numbers so that

$$
\sum_{n=1}^{\infty} M_{n}<\infty \quad \text { and } \quad\left|f_{n}(x)\right|<M_{n} \text { for all } x \in A
$$

then the series $\sum_{n=1}^{\infty} f(x)$ converges absolutely and uniformly for all $x \in A$.
(b) Suppose that

$$
g(x)=\sum_{k=1}^{\infty} \frac{\cos (k x)}{k^{2}}
$$

Evaluate the following:

$$
I=\int_{0}^{\pi / 2} g(x) d x
$$

Your answer should take the form of an infinite series of rationals. Prove your answer.
3. Your answers to this question should probably contain ε 's.
(a) Let $g:[a, b] \rightarrow \mathbb{R}$. Carefully define what it means for g to be Riemann integrable on $[a, b]$.
(b) Prove the following from the definitions of infimum and supremum:

Let $f:[a, b] \rightarrow \mathbb{R}$. Let

$$
M=\sup \{f(x) \text { s.t. } x \in[a, b]\} \quad m=\inf \{f(x) \text { s.t. } x \in[a, b]\}
$$

Then

$$
M-m=\sup \{|f(x)-f(y)| \text { s.t. } x, y \in[a, b]\} .
$$

(c) Prove the following from first principles:

If f is Riemann integrable on $[a, b]$, then $|f|$ is also Riemann integrable on $[a, b]$.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function and let

$$
\varphi=\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} i, \quad \text { where } i=\sqrt{-1}
$$

(a) If f is harmonic, show that φ is holomorphic.
(b) If φ is holomorphic, show that f is harmonic.
5. Let A and α be positive constants with $\alpha<1$. Let f be an entire function (holomorphic on all of \mathbb{C}) that satisfies

$$
|f(z)| \leq A(1+|z|)^{\alpha} .
$$

for all $z \in \mathbb{C}$.
(a) Let a, b be complex numbers with $|a|<R,|b|<R, a \neq b$, and let Γ_{R} be the circle in \mathbb{C} centered at the origin with radius R and oriented counterclockwise. Find

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} \frac{f(z)}{(z-a)(z-b)} d z
$$

(b) Show that f is a constant.
6. (a) Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function and Ω be a connected, simply connected domain in \mathbb{C}. Suppose that $z_{0} \in \Omega$ is the only zero of f and $f^{\prime}\left(z_{0}\right) \neq 0$. Show that

$$
z_{0}=\frac{1}{2 \pi i} \int_{\gamma} \frac{z f^{\prime}(z)}{f(z)} d z \quad \text { where } i=\sqrt{-1}
$$

for any piecewise smooth, counterclockwise oriented, simple closed curve $\gamma \subset \mathbb{C}$ containing z_{0} in its interior.
(b) State Rouché's theorem.
(c) Determine the number of zeros of $P(z)=z^{28}-\sin \left(z^{3}\right)+10 z$ in the annulus $\{z \in$ $\mathbb{C}: 1<|z|<3\}$.
Hint: Remember that $\sin (z)=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$, where $i=\sqrt{-1}$.

