Qualifying Exam Problems: Linear Algebra and Differential Equations

(September 9, 2014)

1. (10 points) Let

$$
A=\left(\begin{array}{cc}
-11 & 9 \\
-30 & 22
\end{array}\right)
$$

Find A^{2014}.
2. Let $n \geq 2$ be an integer, let $M_{n, n}(\mathbb{R})$ be the set of all n-by- n matrices with real entries, let $B \in M_{n, n}(\mathbb{R})$ and let $f_{B}: M_{n, n}(\mathbb{R}) \longrightarrow M_{n, n}(\mathbb{R})$ be given by

$$
f_{B}(A)=A B-B A
$$

for each $A \in M_{n, n}(\mathbb{R})$.
(a) (2 points) Show that f_{B} is a linear map.
(b) (3 points) If B has distinct eigenvalues, show that $\operatorname{dim} \operatorname{ker}\left(f_{B}\right) \geq n$, where $\operatorname{ker}\left(f_{B}\right)$ is the kernel (or nullspace) of f_{B}.
(c) (5 points) If $n=2$ and B is not diagonalizable, find dim $\operatorname{ker}\left(f_{B}\right)$.
3. (a) (1 point) Let $n \geq 2$ be an integer, let $A, B \in M_{n, n}(\mathbb{R})$ and let $\lambda \in \mathbb{C}$. If A is invertible, prove that $\lambda \cdot I_{n}-A B$ is invertible if and only if $\lambda \cdot A^{-1}-B$ is invertible.
(b) (2 points) Let $n \geq 2$ be an integer, let $A, B \in M_{n, n}(\mathbb{R})$ and let $\lambda \in \mathbb{C}$. If A is invertible, prove that $\operatorname{det}\left(\lambda \cdot I_{n}-A B\right)=\operatorname{det}\left(\lambda \cdot I_{n}-B A\right)$.
(c) (3 points) Let $n \geq 2$ be an integer, and let $A, B \in M_{n, n}(\mathbb{R})$. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of $A B$ if and only if it is an eigenvalue of $B A$.
(d) (4 points) Let $C \in M_{2,3}(\mathbb{R})$ and $D \in M_{3,2}(\mathbb{R})$ such that

$$
D C=\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 5
\end{array}\right)
$$

Find $\operatorname{det}(C D)$.
4. Consider the first order system

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
\alpha & -1 \\
1 & \alpha
\end{array}\right] \mathbf{x}(t)
$$

(a) (4 points) If $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are solutions with $\mathbf{x}(0)$ and $\mathbf{y}(0)$ linearly independent, show that $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are linearly independent for all t.
(b) (4 points) Find solutions $\mathbf{x}(t)$ and $\mathbf{y}(t)$ with $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{y}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(c) (2 points) If $\mathbf{x}(t)$ is a solution with $\mathbf{x}(0)$ in the first quadrant (i.e., $x_{1}(0)>0$ and $\left.x_{2}(0)>0\right)$, how many times has $\mathbf{x}(t)$ crossed the positive x_{1} axis when $t=9 \pi$?
5. Consider the initial value problem

$$
\begin{equation*}
\ddot{x}(t)=-V^{\prime}(x(t)), \quad x(0)=a, \quad \dot{x}(0)=b \tag{1}
\end{equation*}
$$

where $V: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function.
(a) (2 points) Find a function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and suitable initial conditions so that the (1) is equivalent to the first order system

$$
\begin{align*}
\dot{x}(t) & =\frac{\partial H}{\partial p}(x(t), p(t)) \tag{2}\\
\dot{p}(t) & =-\frac{\partial H}{\partial x}(x(t), p(t))
\end{align*}
$$

(b) (2 points) Show that $H(x(t), p(t))$ is constant along the trajectories of (2).
(c) (3 points) Suppose that $x=0$ is a strict local minimum of $V(x)$. Show that $(x, p)=(0,0)$ is an equilibrium point. Explain why $(x, p)=(0,0)$ is stable but not asymptotically stable.
(d) (3 points) Now suppose $V(x)=-x^{4} / 2$ and let $(x(t), p(t))$ be the solution of (2) with $x(0)=0$ and $p(0)=1$. Show that $x(t)$ reaches infinity in finite time with the following steps. First show that $\dot{x} \geq 0$ for all t. Then use part (b) to write down a first order equation satisfied by $x(t)$. Using this equation, write down an expression for $t(x)$, the inverse function to $x(t)$. Then show that $t(\infty)<\infty$
6. (a) (4 points) Use separation of variables (Fourier series) to solve the Cauchy problem

$$
u_{t t}=\alpha^{2} u_{x x}
$$

for $t \geq 0$ and for $x \in[0,4]$, with boundary conditions

$$
u(0, t)=u(4, t)=0
$$

and with initial conditions

$$
u(x, 0)=u_{0}(x)= \begin{cases}0 & 0 \leq x \leq 1 \\ 1 & 1<x<3 \\ 0 & 3 \leq x \leq 4\end{cases}
$$

and

$$
u_{t}(x, 0)=0
$$

(b) (3 points) Now use d'Alembert's formula to solve the Cauchy problem

$$
v_{t t}=\alpha^{2} v_{x x}
$$

for $t \geq 0$ and for $x \in \mathbb{R}$, with initial conditions

$$
v(x, 0)=v_{0}(x)= \begin{cases}0 & -\infty<x \leq 1 \\ 1 & 1<x<3 \\ 0 & 3 \leq x<\infty\end{cases}
$$

and

$$
v_{t}(x, 0)=0 .
$$

(c) (3 points) For what values of $t \geq 0$ do the solutions of parts (a) and (b) agree (for $0 \leq x \leq 4$)? Write down the explicit form of $v(x, 1 /(2 \alpha))$ for $0 \leq x \leq 4$. What is the Fourier series representation of this function?

