1. (10 points) Let

$$A = \left(\begin{array}{rrr} -11 & 9\\ -30 & 22 \end{array}\right)$$

Find A^{2014} .

2. Let $n \ge 2$ be an integer, let $M_{n,n}(\mathbb{R})$ be the set of all *n*-by-*n* matrices with real entries, let $B \in M_{n,n}(\mathbb{R})$ and let $f_B : M_{n,n}(\mathbb{R}) \longrightarrow M_{n,n}(\mathbb{R})$ be given by

$$f_B(A) = AB - BA$$

for each $A \in M_{n,n}(\mathbb{R})$.

- (a) (2 points) Show that f_B is a linear map.
- (b) (3 points) If B has distinct eigenvalues, show that dim ker $(f_B) \ge n$.
- (c) (5 points) If n = 2 and B is not diagonalizable, find dim ker (f_B) .
- 3. (a) (1 point) Let $n \ge 2$ be an integer, let $A, B \in M_{n,n}(\mathbb{R})$ and let $\lambda \in \mathbb{C}$. If A is invertible, prove that $\lambda \cdot I_n AB$ is invertible if and only if $\lambda \cdot A^{-1} B$ is invertible.
 - (b) (2 points) Let $n \ge 2$ be an integer, let $A, B \in M_{n,n}(\mathbb{R})$ and let $\lambda \in \mathbb{C}$. If A is invertible, prove that $\det(\lambda \cdot I_n AB) = \det(\lambda \cdot I_n BA)$.
 - (c) (3 points) Let $n \ge 2$ be an integer, and let $A, B \in M_{n,n}(\mathbb{R})$. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of AB if and only if it is an eigenvalue of BA.
 - (d) (4 points) Let $C \in M_{2,3}(\mathbb{R})$ and $D \in M_{3,2}(\mathbb{R})$ such that

$$DC = \left(\begin{array}{rrrr} 2 & -1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 5 \end{array}\right)$$

Find $\det(CD)$.

- 4. (10 points) Let $Z \subset G$ be the center of a group G and suppose that G/Z is cyclic. Prove that G is Abelian.
- 5. (a) (4 points) Determine the minimal polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over the field \mathbb{Q} .
 - (b) (2 points) Determine the minimal polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over the field $\mathbb{Q}(\sqrt{5})$.
 - (c) (2 points) Determine the minimal polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over the field $\mathbb{Q}(\sqrt{10})$.
 - (d) (2 points) Determine the minimal polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over the field $\mathbb{Q}(\sqrt{15})$.
- 6. (a) (2 points) Let G be a group of prime order p. Show that the order of Aut(G), the automorphism group of G, is p-1.
 - (b) (2 points) Let G be a group and let $N \subset G$ be a normal subgroup. Show that conjugation induces a homomorphism $\phi: G \to \operatorname{Aut}(N)$.
 - (c) (3 points) Show that a group G of order 15 is cyclic.
 - (d) (3 points) Show that if the order of a group G is 255, then G is cyclic. Hint: Find the number of Sylow 17-subgroups and use the results of parts (a), (b), and (c).