## Qualifying Exam Problems: Algebra

(September 9, 2014)

1. (10 points) Let

$$
A=\left(\begin{array}{cc}
-11 & 9 \\
-30 & 22
\end{array}\right)
$$

Find $A^{2014}$.
2. Let $n \geq 2$ be an integer, let $M_{n, n}(\mathbb{R})$ be the set of all $n$-by- $n$ matrices with real entries, let $B \in M_{n, n}(\mathbb{R})$ and let $f_{B}: M_{n, n}(\mathbb{R}) \longrightarrow M_{n, n}(\mathbb{R})$ be given by

$$
f_{B}(A)=A B-B A
$$

for each $A \in M_{n, n}(\mathbb{R})$.
(a) (2 points) Show that $f_{B}$ is a linear map.
(b) (3 points) If $B$ has distinct eigenvalues, show that $\operatorname{dim} \operatorname{ker}\left(f_{B}\right) \geq n$.
(c) (5 points) If $n=2$ and $B$ is not diagonalizable, find $\operatorname{dim} \operatorname{ker}\left(f_{B}\right)$.
3. (a) (1 point) Let $n \geq 2$ be an integer, let $A, B \in M_{n, n}(\mathbb{R})$ and let $\lambda \in \mathbb{C}$. If $A$ is invertible, prove that $\lambda \cdot I_{n}-A B$ is invertible if and only if $\lambda \cdot A^{-1}-B$ is invertible.
(b) (2 points) Let $n \geq 2$ be an integer, let $A, B \in M_{n, n}(\mathbb{R})$ and let $\lambda \in \mathbb{C}$. If $A$ is invertible, prove that $\operatorname{det}\left(\lambda \cdot I_{n}-A B\right)=\operatorname{det}\left(\lambda \cdot I_{n}-B A\right)$.
(c) (3 points) Let $n \geq 2$ be an integer, and let $A, B \in M_{n, n}(\mathbb{R})$. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of $A B$ if and only if it is an eigenvalue of $B A$.
(d) (4 points) Let $C \in M_{2,3}(\mathbb{R})$ and $D \in M_{3,2}(\mathbb{R})$ such that

$$
D C=\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 5
\end{array}\right)
$$

Find $\operatorname{det}(C D)$.
4. (10 points) Let $Z \subset G$ be the center of a group $G$ and suppose that $G / Z$ is cyclic. Prove that $G$ is Abelian.
5. (a) (4 points) Determine the minimal polynomial for $\alpha=\sqrt{3}+\sqrt{5}$ over the field $\mathbb{Q}$.
(b) (2 points) Determine the minimal polynomial for $\alpha=\sqrt{3}+\sqrt{5}$ over the field $\mathbb{Q}(\sqrt{5})$.
(c) (2 points) Determine the minimal polynomial for $\alpha=\sqrt{3}+\sqrt{5}$ over the field $\mathbb{Q}(\sqrt{10})$.
(d) (2 points) Determine the minimal polynomial for $\alpha=\sqrt{3}+\sqrt{5}$ over the field $\mathbb{Q}(\sqrt{15})$.
6. (a) (2 points) Let $G$ be a group of prime order $p$. Show that the order of $\operatorname{Aut}(G)$, the automorphism group of $G$, is $p-1$.
(b) (2 points) Let $G$ be a group and let $N \subset G$ be a normal subgroup. Show that conjugation induces a homomorphism $\phi: G \rightarrow \operatorname{Aut}(N)$.
(c) (3 points) Show that a group $G$ of order 15 is cyclic.
(d) (3 points) Show that if the order of a group $G$ is 255 , then $G$ is cyclic. Hint: Find the number of Sylow 17-subgroups and use the results of parts (a), (b), and (c).

