(September 9, 2014)

1. (10 points) Compute the limit

$$\lim_{n \to \infty} \int_0^{n^{\frac{1}{3}}} (1 - \frac{x^2}{n})^n dx.$$

Write your answer in the form of a definite integral, justifying each step in your calculation. Then evaluate the integral.

2. (10 points) Let $f : [0,1] \to \mathbb{R}$ be a bounded measurable function. Let $g : [-2,2] \to \mathbb{R}$ be Lebesgue integrable. Show that

$$\lim_{h \to 0} \int_0^1 f(x)g(x+h)dx = \int_0^1 f(x)g(x)dx.$$

- 3. (10 points) Let $k \ge 1$ be an integer. Suppose $f : [0, k] \to \mathbb{R}$ is a continuous function with f(0) = f(k). Show that there exists at least k different pairs of x_1, x_2 , such that $f(x_2) = f(x_1)$ and $x_2 - x_1$ is an integer.
- 4. (10 points) Use branch cut and contour integrals to evaluate the integral

$$I = \int_0^\infty \frac{(\ln x)^2}{1 + x^2} \, dx$$

5. (a) (5 points) How many solutions are there to the equation

$$z^7 + 2 = e^{-z}$$

in the right-hand half-plane where Re(z) > 0? Justify your answer.

- (b) (5 points) Find an explicit analytic function ϕ mapping the sector $\{Re^{i\theta}|r>0, -\frac{\pi}{4}<\theta<\frac{\pi}{4}\}$ onto the open unit disk $\{|z|<1\}$.
- 6. Let f be an entire function and $a, b \in \mathbb{C}, a \neq b$.
 - (a) (5 points) Evaluate the integral $\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz$ for R > |a| and R > |b|.
 - (b) (5 points) Assume that $|f(z)| \leq \sqrt{1+|z|}$ for all $z \in \mathbb{C}$. Use part (a) to show that f must be a constant.