Qualifying Exam Problems: Analysis

(September 9, 2014)

1. (10 points) Compute the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{n^{\frac{1}{3}}}\left(1-\frac{x^{2}}{n}\right)^{n} d x
$$

Write your answer in the form of a definite integral, justifying each step in your calculation. Then evaluate the integral.
2. (10 points) Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded measurable function. Let $g:[-2,2] \rightarrow \mathbb{R}$ be Lebesgue integrable. Show that

$$
\lim _{h \rightarrow 0} \int_{0}^{1} f(x) g(x+h) d x=\int_{0}^{1} f(x) g(x) d x
$$

3. (10 points) Let $k \geq 1$ be an integer. Suppose $f:[0, k] \rightarrow \mathbb{R}$ is a continuous function with $f(0)=f(k)$. Show that there exists at least k different pairs of x_{1}, x_{2}, such that $f\left(x_{2}\right)=f\left(x_{1}\right)$ and $x_{2}-x_{1}$ is an integer.
4. (10 points) Use branch cut and contour integrals to evaluate the integral

$$
I=\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

5. (a) (5 points) How many solutions are there to the equation

$$
z^{7}+2=e^{-z}
$$

in the right-hand half-plane where $\operatorname{Re}(z)>0$? Justify your answer.
(b) (5 points) Find an explicit analytic function ϕ mapping the sector $\left\{R e^{i \theta} \mid r>0,-\frac{\pi}{4}<\theta<\frac{\pi}{4}\right\}$ onto the open unit disk $\{|z|<1\}$.
6. Let f be an entire function and $a, b \in \mathbb{C}, a \neq b$.
(a) (5 points) Evaluate the integral $\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z$ for $R>|a|$ and $R>|b|$.
(b) (5 points) Assume that $|f(z)| \leq \sqrt{1+|z|}$ for all $z \in \mathbb{C}$. Use part (a) to show that f must be a constant.

