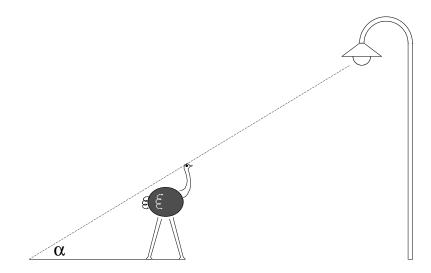
December 2006	Mathematics 102	Name

Marks

[8] 1. Using the definition of derivative, find
$$f'(2)$$
 where $f(x) = \frac{1}{1+x^2}$.

December 2006 Mathematics 102 Name _____


[12] **2.** Use implicit differentiation to find the points on the curve

$$3y^3 - 2x^3 - 6x^2y + 5y = 0$$

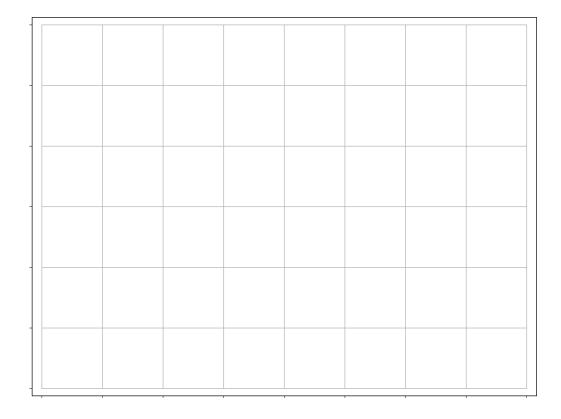
where the tangent line to the curve is horizontal. Write your answers in the box in the form (x, y).

Points:

[14] 3. An ostrich 1.5 m tall is walking toward a street light 4 m above the ground at a speed of 5 m/s. How fast is the length of the ostrich's shadow decreasing? At what speed is the tip of the shadow moving? If α is the angle between the light and the ground measured at the tip of the shadow, as shown in the picture, what is the rate of change of α when the shadow is 1.5 m long?

December 2006 Mathematics 102 Name _

[6] 4. Suppose the number of bacteria in a colony doubles every 20 minutes. If there are 2^{39} cells (about 5.5×10^{11}) after 12 hours, how many were there at the beginning?


[6] 5. The tide on a certain shore on the planet Outer Thebulon IV has a period of 36.5 hours, and the high tide level is 8 m above the low tide level. At t = 0 the water level is 2 m above the low tide level and rising. Using trigonometric functions, find a function to describe the height H(t) of the water above the low tide level.

$$H(t) =$$

December 2006 Mathematics 102 Name _____

[12] 6. Sketch the graph of $f(x) = \frac{x}{1+x^2}$ on the grid provided, showing all of the following if they are present:

- i) x and y intercepts
- ii) critical points
- iii) intervals where f is increasing or decreasing
- iv) points of inflection
- v) intervals where f is concave up or down.

December 2006	Mathematics 102	Name

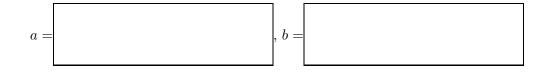
- 7. Write your answers in the boxes.
- [3] (a) An object moves along a line. If the object's position at time t is $x(t) = 3t^2 2t + 1$, what is its average velocity from 0 to time 3? Time is measured in seconds, position in metres.

[3] (b) Use a linear approximation to estimate $(65)^{1/3}$, given that $(64)^{1/3} = 4$. The answer should use fractions, not decimals.

$$(65)^{1/3} \approx$$

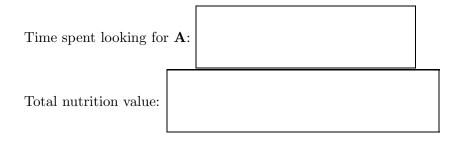
[3] (c) In trying to solve the equation $x^3 + 5x - 3 = 0$ using Newton's method, our initial guess is $x_0 = 1$. What is x_1 ? The answer should use fractions, not decimals.

$$x_1 =$$


[3]

(d) Using Euler's method to solve the differential equation $y' = y^2$ with y(0) = 2 and step size 0.1, what is the approximate value of y(0.2)? The answer should be given to at least 3 decimal places.

$$y(0.2) \approx$$


December 2006 Mathematics 102 Name _____ Page 8 of 11 pages

Find a and b such that $f(x) = ax^3 + bx^2 + 1$ has an inflection point at (-1, 2). 8. [6]

December 2006	Mathematics	102	Name _
---------------	-------------	-----	--------

[10] 9. Okapis have two types of food (**A** and **B**) available in their environment. These animals spend 10 hours every day looking for food. When looking for **A**, the okapi gets 2 kilograms of **A** per hour it spends on this; when looking for **B**, the okapi gets 1 kilogram of **B** per hour. The nutrition value obtained from x kilograms of **A** is given by $x^3 - 16x^2 + 25x + 500$ and from y kilograms of **B** is given by y^2 . How should an okapi divide its time between the two types of food to maximize the total daily nutrition value, and what is the total nutrition value when it does so?

December 2006 Mathematics 102 Name ____

10. Consider Newton's law of cooling

$$\frac{dT}{dt} = 2 - \frac{1}{5}T$$

with initial condition T(0) = 37.

[6] (a) Find values of the constants a, b and k such that

$$T(t) = a + be^{-kt}$$

is a solution to the initial value problem given above.

- [4] (b) Using the solution obtained in (a) to find the time τ at which $T(\tau) = 13$. Express the answer in terms of m, where $m = \ln 3$.
- [4] (c) What is the steady state for this differential equation? Is it stable or unstable?

Useful Formulae

Law of cosines:

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Trig identities:

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Values:

θ	$\sin heta$	$\cos heta$
0	0	1
$\pi/6$	1/2	$\sqrt{3}/2$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	$\sqrt{3}/2$	1/2
$\pi/2$	1	0

Be sure that this examination has 11 pages including this cover

The University of British Columbia

Sessional Examinations - December 2006

Mathematics 102

Differential Calculus with applications to Life Sciences

Closed book examination

Time: $2\frac{1}{2}$ hours

Signature _____

Student Number_____

Section_____

Special Instructions:

Non-graphing calculators allowed, no other aids. Show your work. The last page contains some helpful formulae.

Rules governing examinations

1. Each candidate should be prepared to produce his or her library/AMS card upon request.

2. Read and observe the following rules:

No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination.

Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.

CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.

(a) Making use of any books, papers or electronic devices, other than those authorized by the examiners.

(b) Speaking or communicating with other candidates.

(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.

3. Smoking is not permitted during examinations.

1	8
2	12
3	14
4	6
5	6
6	12
7	12
8	6
9	10
10	14
Total	100