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Problem 1: Multiple Choice Questions: Select ONE correct answer
(a, b, c, d, or e) and write it in Table 1. You will not be graded for
any work or answers outside those boxes.

1.1: The equation of the tangent line to the function y = f(x) at the point x0 is

(a) y = f(x0) + f ′(x0)(x − x0)
(b) y = f ′(x0) + f(x0)(x − x0)
(c) y = x0 + f(x0)/f

′(x0)
(d) y = f(x) − f ′(x)(x − x0)
(e) y = f(x0) − f ′(x0)(x − x0)

1.2: The functions f(x) = x2 and g(x) = x3 are equal at x = 0 and at x = 1. Between x = 0
and x = 1, for what value of x are their graphs furthest apart?

(a) x = 1/2 (b) x = 1/3 (c) x = 2/3 (d) x = 1/4 (e) x = 3/4

1.3: Consider a point in the first quadrant on the hyperbola x2 − y2 = 1 with x = 2 . The
slope of the tangent line at that point is

(a) 2/
√

5 (b) 1/
√

3 (c)
√

5/2 (d) 2/
√

3 (e) 2/3

1.4: For a, b > 0, solving the equation ln(x) = 2 ln(a) − 3 ln(b) for x leads to

(a) x = e2a−3b (b) x = a2/b3 (c) x = 2a − 3b (d) x = a2b3 (e) x = (a/b)6

1.5: The function y = f(x) = arctan(x)− (x/2) has local maxima (LX), local minima (LM)
and inflection points (IP) as follows:

(a) LX: x = −1, LM: x = 1, IP: x = 0. (b) LX: x =
√

3, LM: x = −
√

3, IP: x = 0.
(c) LX: x = 1, LM: x = −1, IP: none (d) LX: x = 1, LM: x = −1, IP: x = 0.
(e) LX: x = −

√
3, LM: x =

√
3, IP: x = 0.
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Answers to Multiple choice questions should go in the boxes below. Use this page for scrap.

Q 1.1 Q 1.2 Q 1.3 Q 1.4 Q 1.5

Table 1: Fill in these boxes with the letters (a, b, c, d, or e) corresponding to the one correct
answer for each question. Illegible or ambiguous responses will not receive marks.
NOTE: carefully check to ensure that you have correctly matched the response with the
relevant questions. Only answers in this table using letters a, b, c, d, or e will be graded for
Problem 1.
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Problem 2: The following problems require little or no computation. Put the answer in
the box provided. You may use space here for supporting reasoning or computations, if any,
for which part-marks would be awarded.

(a) Suppose y = f(x) is a function having the following properties: f(1) = 2, f ′(1) = 3.
Suppose g(x) is the inverse function for f(x). Then the slope of the tangent line to
g(x) at the point x = 2 is:

slope=

(b) A differential equation describing radioactive decay of a substance is

dy

dt
= −ky,

where y(t) = Ce−kt is the amount of radioactivity remaining. A plot of y(t) versus t is
found to be a curve that goes through the point (0, 10), and has tangent line of slope
−5 at that point. What are the values of the constants?

C = , k =

(c) A linear approximation for y = sin(0.05) that uses the fact that sin(0) = 0 is

sin(0.05) ≈
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Problem 3: The graph of a certain smooth function f(x) has the following properties:
f(0) = f(5) = 1; there are critical points at x = 1 and x = 3 and points of inflection at
x = 2 and x = 4; there are no other critical points or inflection points, and the graph is
concave up for x ≤ 2. Inside the interval 0 < x < 5, the maximum value of f(x) is 2 and
the minimum value of f(x) is 0. Sketch the graph on the grid provided.

[Suggestion: use a pencil for your first attempt, for easier modifications.]
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Problem 4:

Two spherical balloons are connected so that one inflates as the other deflates, the sum of
their volumes remaining constant. When the first balloon has radius 10 cm and its radius is
increasing at 3 cm/sec, the second balloon has radius 20 cm. What is the rate of change of
the radius of the second balloon at that time?

[Recall that the volume of a sphere of radius r is V = (4/3)πr3].

Rate of change of radius of second balloon =
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Problem 5:
A particle’s motion is described by y(t) = t3 − 6t2 + 9t
where y(t) is the displacement (in metres), t is time (in seconds), and 0 ≤ t ≤ 4 seconds.

[3pts] (a) During this time interval, when is the particle farthest from its initial position?

At time(s) =

[4pts] (b) During the time interval 0 ≤ t ≤ 4, what is the greatest speed (in either direction)
of the particle?

Greatest speed =

[3pts] (c) What is the total distance (including both forward and backward directions) that
the particle has travelled during this time interval?

Total distance =
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Problem 6: Consider the two functions

h(x) = sin(x), g(x) = ax, x ≥ 0,

where a > 0 is a constant. y = h(x) is shown in the graph below. Your answers to parts (a)
and (b) should include typical sketches of y = g(x).
[Note the relationship of this question to Lab 6 in your Math 102 course.]
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2 Suppose a = 2. In that case, the
only intersection is at x = 0.

(a) For what range of values of a
will there be more than one in-
tersection for x ≥ 0 [i.e. one at
x = 0 and also intersection(s) at
some other point(s)]?

a <

Sketch an example of y = ax for
such a on the same graph.

(b) Name any positive value of a such that there are exactly four intersection points for
x ≥ 0 (including the one at x = 0).

Sketch an example of y = ax for such a on the same graph. a =

(c) Now suppose that a = 1/2. How many intersection points are there for x > 0?
Use Newton’s method with the initial guess x0 = π to find an improved estimate, x1 for the
point of intersection of the two graphs. [Leave your answer as a simplified fraction in terms
of π. Do not compute a decimal approximation.]

Number of intersections =

x1 =
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Problem 7: “Live and Learn”
Knowledge can be acquired by studying, but it is forgotten over time. A simple model for
learning represents the amount of knowledge, y(t), that a person has at time t (in years) by
a differential equation

dy

dt
= S − fy

where S ≥ 0 is the rate of studying and f ≥ 0 is the rate of forgetting. We will assume that
S and f are constants that could have different values for different people. [Your answers to
the following questions will contain constants such as S or f .]

[3pts](a) Mary never forgets anything. What does this imply about the constants S and/or f?

Mary starts studying in school at time t = 0 with no knowledge at all. How much
knowledge will she have after 4 years (i.e. at t = 4)?

y(4) =

[3pts](b) Tom learned so much in preschool that his knowledge when entering school at time
t = 0 is y = 100. However, once Tom in school, he stops studying completely. What
does this imply about the constants S and/or f?

How long will it take him to forget 75% of what he knew?

Time =
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Problem 7, Continued

[5pts](c) Jane studies at a rate of 10 units per year and forgets at a rate of 0.2 units per year.
Sketch a “direction field” (“slope field”) for the differential equation describing Jane’s
knowledge. Add a few curves y(t) to show how Jane’s knowledge changes with time.
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How much knowledge would Jane have if she keeps studying (and forgetting) for a very long
time?

Jane’s knowledge after a long time =
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Problem 8: Egyptian plovers are small birds that eat food off the exposed surface of
crocodile teeth. The crocodile benefits from clean teeth, while the plover gets a free meal.
Assume that the exposed crocodile teeth are isosceles triangles (two equal sides) and that
the exposed perimeter (total length of dark lines in figure) is always P = 10 cm. The height
of the teeth varies (short teeth at the back of the mouth, tall teeth at the front). The plover
wants to choose the tooth with largest surface area (and thus, the largest amount of free
food). What height of tooth should the plover look for?

H

B

Crocodile tooth

The exposed perimeter, P , of a tooth of base B and
height H is

P = 2
√

H2 + (B/2)2.

The exposed surface area, A, of the tooth is

A =
1

2
BH.

Height of tooth =
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Problem 9:

D

H

α

waterpier

camera

leading
duck

x

Graduate student Ryan Lukeman studies
behaviour of duck flocks swimming near
Canada Place in Vancouver, BC. This figure
from his PhD thesis shows his photography
set-up. Here H = 10 m is the height from
sea level up to his camera at the observation
point, D = 2 m is the width of the pier (a
stationary platform whose size is fixed), and
x is the distance from the pier edge to the
leading duck in the flock (in metres). α is a
visual angle (at the camera) between the line
of sight to the leading duck and to the pier
edge, as shown in the figure.

At the instant that the visual angle is increasing at a rate of 1/100 radians per second, at
what rate is the leading duck swimming away from the pier if it is 3m away from the pier?

speed of leading duck =
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Useful Formulae

Law of cosines:
c2 = a2 + b2 − 2ab cos θ

Trig identities:

sin2 θ + cos2 θ = 1
sin(A + B) = sin A cos B + cos A sin B
cos(A + B) = cos A cos B − sin A sin B

tan θ = sin θ

cos θ

Values:
θ sin θ cos θ
0 0 1

π/6 1/2
√

3/2

π/4
√

2/2
√

2/2

π/3
√

3/2 1/2
π/2 1 0
π 0 −1


