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Math 103 Name:

1. (12 points) Short answer problems (only answers are marked)

a. (5) For each of the following series, indicate whether or not they converge:

i.
∞∑
n=1

2

n
ANSWER: � converges; � does not converge.

ii.
∞∑
n=1

1

2n
ANSWER: � converges; � does not converge.

iii.
∞∑
n=1

2n ANSWER: � converges; � does not converge.

iv.
∞∑
n=1

1

n2
ANSWER: � converges; � does not converge.

v.
∞∑
n=2

n

1− n3
ANSWER: � converges; � does not converge.

b. (5) Consider the following four probability density functions (pdf):

xa b

(1)

xa b

(2)

xa b

(3)

xa b

(4)

i. Which pdf has the smallest mean? ANSWER:

ii. Which pdf has the largest variance? ANSWER:

iii. Which pdf has the smallest standard deviation? ANSWER:

iv. Which pdf has median larger than the mean? ANSWER:

v. Find the maximal probability density in (4).
(Note: the peaks at a and b are of equal heights.) ANSWER:

c. (2) A dice is manipulated such that the chance of throwing a 6 is twice as likely
as throwing any one of the other numbers (1-5). What is the expected (average)
number of throws required to get a 6? Circle the correct answer.

i. 3 ii. 3.5 iii. 4 iv. 6 v. 7
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2. (20 points) Short problems

a. (4) Evaluate the integral

I1 =

∫ 1

1
2

sin(πx) cos(πx)dx

ANSWER: I1 =

b. (6) Evaluate the integral (Hint: use trigonometric identities.)

I2 =

∫
(sinx)3(cosx)2dx

ANSWER: I2 =
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c. (6) Consider the differential equation

dy

dx
= y − x.

Use a Taylor series expansion to find the solution y(x) for the initial value y(0) = 1.

ANSWER: y(x) =

d. (4) A student takes a multiple choice test with 6 questions each of which has 4
possible answers and exactly one is correct. To pass the test at least 5 correct
answers are required. (Note: simplify your answers as much as possible but leave
fractions and powers.)

i. What is the probability that a student who did not study and randomly checks
his/her answers still passes the test?

ANSWER:

ii. With what probability does the student have to get every answer correct in
order to get a perfect score with a probability of at least 80%?

ANSWER:
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3. (10 points) Consider the function f(x) = x(x− 2)(x+ 1).

a. (3) Sketch the function.

-3 -2 -1 0 1 2 3

-4

-2

0

2

4

b. (7) Find the total, finite area A bounded by f(x) and the x-axis.

ANSWER: A =
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4. (14 points) Consider the function f(x) = ex for 0 ≤ x ≤ 1.

a. (6) Find the volume V1 of the horn when rotating f(x) around a horizontal axis at
y = 1.

ANSWER: V1 =

b. (8) Find the volume V2 of the bowl when rotating f(x) around the y-axis. (Note:
for this problem there are two ways to set the relevant integral up - either one is
fine. One way involves rewriting f(x) as x = g(y).)

ANSWER: V2 =
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5. (12 points) In a room two different lightbulbs A and B are installed. According to
the packaging, lightbulb A fails before time t with probability FA(t) = 1 − e−t (t in
months). Lightbulb B has a probability density function for the failure time given by
pB(t) = Ce−2t.

a. (2) What is the probability density function for the failure time of lightbulb A?

ANSWER: pA(t) =

b. (2) Determine the constant C of the probability density function for the failure
time of lightbulb B?

ANSWER: C =

c. (4) What is the probability that both lightbulbs are still working after t months?

ANSWER:

d. (4) Which light bulb has the longer expected lifetime? (i.e. longer average time to
failure.) Show your reasoning.

ANSWER:
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6. (10 points) Consider the differential equation

dy

dx
= (y2 − 1)x.

a. (3) Find the steady state solution(s).

ANSWER:

b. (7) Solve for y(t) given the initial value y(0) = 0.

ANSWER: y(t) =
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7. (12 points) Taylor series

a. (4) Find the first three non-zero terms of the Taylor series for f(x) = ln(1 + x)
(around x = 0).

ANSWER:

b. (4) The following definite integral cannot be solved analytically:

∫ 1

0

sinx

x
dx.

Approximate the integral based on the first three non-zero terms of the Taylor series
(around x = 0).

(Hint: Taylor series for sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.)

ANSWER:

c. (4) Find the Taylor series for the function f(x) = x cosx. Write your answer in
summation notation. (Hint: the Taylor series for sinx may be helpful.)

ANSWER:

Final examination Page 8 of 10



Math 103 Name:

8. (10 points) In a lab a bacterial colony is grown in a petri dish. The colony is circular
and the area A covered by the colony increases at a rate proportional to its circumference
C (because of the high nutrient concentration in the surrounding area):

dA

dt
= k · C.

One day (t = 0) the colony was observed to cover an area of 1 [mm2]. The next day
the colony had grown to cover 2 [mm2]. What area does the colony cover after T days?
(Assume that the petri dish is large enough such that the colony never reaches the
boundary.)

ANSWER: A(T ) =
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Useful Formulæ

Summation

N∑
k=1

k =
N(N + 1)

2
,

N∑
k=1

k2 =
N(N + 1)(2N + 1)

6
,

N∑
k=1

k3 =

(
N(N + 1)

2

)2

N∑
k=0

rk =
1− rN+1

1− r
,

∞∑
k=0

krk−1 =
1

(1− r)2

Trigonometric identities

sin(α + β) = sinα cos β + cosα sin β; for α = β: sin(2α) = 2 sinα cosα

cos(α + β) = cosα cos β − sinα sin β; for α = β: cos(2α) = 2 cos2 α− 1

sin2 α + cos2 α = 1

tan2 α + 1 = sec2 α =
1

cos2 α

Some trigonometric values

sin(0) = 0, sin(
π

6
) =

1

2
, sin(

π

4
) =

√
2

2
, sin(

π

3
) =

√
3

2
, sin(

π

2
) = 1, sin(π) = 0

cos(0) = 1, cos(
π

6
) =

√
3

2
, cos(

π

4
) =

√
2

2
, cos(

π

3
) =

1

2
, cos(

π

2
) = 0, cos(π) = −1

Derivatives

d

dx
arcsinx =

1√
1− x2

,
d

dx
arccosx = − 1√

1− x2
,

d

dx
arctanx =

1

1 + x2

Moments of a probability density function

Mk =

∫ b

a

p(x)xkdx
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