This examination has 13 pages of questions excluding this cover

The University of British Columbia Final Exam - April 24, 2014

Mathematics 103: Integral Calculus with Applications to Life Sciences

202 (Carlquist), 203 (Kim), 206 (Bruni), 207 (Namazi), 208 (Wong), 209 (Wardil)

Closed book examination

Time: 150 minutes

Last Name: _____

Student Number: _____ Section: circle above

Rules governing examinations:

1. No books, notes, electronic devices or any papers are allowed. To do your scratch work, use the back of the examination booklet. Additional paper is available upon request.

First Name:

- 2. You should be prepared to produce your library/AMS card upon request.
- 3. No student shall be permitted to enter the examination room after 10 minutes or to leave before the completion of the examination.
- 4. You are not allowed to communicate with other students during the examination. Students may not purposely view other's written work nor purposefully expose his/her own work to the view of others or any imaging device.
- 5. At the end of the exam, you will put away all writing implements upon instruction. Students will continue to follow all of the above rules while the papers are being collected.
- 6. Students must follow all instructions provided by the invigilator.
- 7. Students are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions
- 8. Any deviation from these rules will be treated as an academic misconduct. The plea of accident or forgetfulness shall not be received.

I agree to follow the rules outlined above _

(signature)

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	16	8	10	8	9	10	8	8	8	12	3	100
Score:												

Important

- 1. Simplify all your answers as much as possible and express answers in terms of fractions or constants such as \sqrt{e} or $\ln(4)$ rather than decimals.
- 2. Show all your work and explain your reasonings clearly!

- 1. (16 points) Multiple Choice Questions Circle the correct answer. (No need to show work in this question.)
 - **a.** (2 marks) Which of the following is equal to $\frac{d}{dx} \left[\int_0^{x^2} \sin t \, dt \right]$? (A) $2x \sin(x^2)$ (B) $\sin(x^2)$ (C) $\cos x$ (D) $2x \cos(x^2)$
 - **b.** (2 marks) Let p(x) be a probability density function defined on the interval [0, 10]. Determine whether each of the following statements is *True* or *False*:
 - i. Let $f(x) = \int_2^x p(t) dt$. Then the derivative of f(x) at x = 5 satisfies $f'(5) \ge 0$: True / False
 - ii. $0 \leq \int_0^{10} tp(t) dt \leq 10$: True / False
 - c. (6 marks) The graph below depicts the velocity of a car traveling along a straight road as a function of time, $v(t) = \sin(2\pi t)$. Initial time is t = 0.

Determine whether each of the following statements is True, False or Indeterminate:

i. At t = 0 the car starts with a non zero initial velocity:

True / False / Indeterminate

ii. The car returns to its initial position when t = 1:

True / False / Indeterminate

iii. The car is moving away from its original position when t = 5/4:

True / False / Indeterminate

Final Exam

- **d.** (4 marks) Let's assume the size of a microbial population x(t) (in millions) at time t (hours) is determined by the differential equation $\frac{dx}{dt} = x(1-x)(x-1/2)$. Circle the correct answers.
 - **i.** Determine *all* steady states (or stationary states or equilibria). *Circle all steady states*:

$$(\mathbf{A}) - 2$$
 $(\mathbf{B}) - 1$ $(\mathbf{C}) - \frac{1}{2}$ $(\mathbf{D}) 0$ $(\mathbf{E}) \frac{1}{2}$ $(\mathbf{F}) 1$ $(\mathbf{G}) 2$

ii. If the initial population is x(0) = 0, then the population x(t) will converge to the stationary state x = 1/2 as $t \to \infty$:

True / False

- iii. If x(0) is in the interval [0, 1], then the population will stay inside this interval: True / False
- e. (2 marks) Consider the sequence

$$(a_k)_{k=1}^{\infty} = \left(1, 0, \frac{1}{2}, 0, 0, \frac{1}{3}, 0, 0, 0, \frac{1}{4}, 0, 0, 0, 0, \frac{1}{5}, \ldots\right)$$

and its associated series $\sum_{k=1}^{\infty} a_k$. Circle the correct answers.

i. The sequence $\{a_k\}_{k=1}^{\infty}$ converges to 0 as $k \to \infty$:

True / False

ii. The series $\sum_{k=1}^{\infty} a_k$ diverges:

True / False

Name:

- 2. (8 points) (Work must be shown for full marks. Simplify fully.)
 - **a.** (3 marks) Compute the arc length of the curve y = f(x) for $1 \le x \le 4$ with $f(x) = \int_1^x \sqrt{t^3 1} dt$

b. (5 marks) Let

$$f(x) = x^2, \quad \text{for } 0 \le x \le 1.$$

Find the volume of the solid generated by revolving y = f(x) (for $0 \le x \le 1$) around the horizontal line y = -1. *Hint: a sketch might help.*

3. (10 points) (Work must be shown for full marks. Simplify fully.)

Vancouver has some of the best salmon hatcheries (i.e. salmon farms) in the world. The probability that a young salmon takes t days to swim from the Capilano Salmon Hatchery to the Pacific Ocean is given by the probability density function

 $p(t) = e^{3-t} \qquad \text{for } 3 \le t \le \infty.$

[It is assumed that it takes at least 3 days for a salmon to reach the ocean.]

a. (3 marks) Find the probability that a young salmon takes <u>at least</u> 5 days to swim from the hatchery to the ocean.

b. (3 marks) Find the average (i.e. mean) time it takes for a young salmon to swim from the hatchery to the Pacific Ocean.

c. (4 marks) Assume that the lifetime of a salmon depends on how quickly it manages to reach the Pacific Ocean as a juvenile. Suppose that a salmon lives s years, where $s = \ln(t+1)$, if it reaches the Pacific Ocean in t days. Find the probability density function q(s) for s.

Name:

- 4. (8 points) (Work must be shown for full marks. Simplify fully.)
 - **a.** (3 marks) Evaluate $\lim_{n\to\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^2 \frac{1}{n}$ if it exists, or show that it does not exist, otherwise.

b. (3 marks) Let $(a_n)_{n\geq 1}$ be a **sequence**, where $a_n = 1 + \frac{n}{(n+1)!}$. Find the limit of the sequence if it converges, or show that it diverges, otherwise.

c. (2 marks) Evaluate $\lim_{n \to \infty} n \ln \left(1 + \frac{2}{n}\right)$ if it exists, or show that it does not exist, otherwise.

5. (9 points) (Work must be shown for full marks. Simplify fully.)

A mutation occurs within a bacterial species that allows it to acquire antibiotic resistance. Through natural selection the abundance of the mutant trait increases in the population. Let y be the fraction (i.e. $0 \le y \le 1$) of the population, which carries the antibiotic resistance trait. Suppose y satisfies the following differential equation:

$$\frac{dy}{dt} = (1-y)^3,$$

where t is time (years).

- **a.** (1 mark) Determine *all* steady state solutions (or stationary solutions or equilibria) of the differential equation.
- **b.** (5 marks) At time t = 0 it is determined that half of the bacterial population carries the antibiotic resistance trait. Determine the fraction of the bacterial population with antibiotic resistance as a function of time t.

c. (3 marks) In the same situation as part **b**, how long after t = 0 does it take until 80% of the bacterial population is resistant to antibiotics?

Name:

6. (10 points) (Work must be shown for full marks. Simplify fully.)

Determine with full justification whether the following series converge. You do not have to evaluate the sums.

a. (3 marks)
$$\sum_{n=1}^{\infty} \left(\frac{\cos(e^n) + 10}{n^2} \right)$$

b. (3 marks)
$$\sum_{n=1}^{\infty} \cos^2\left(\frac{1}{n}\right)$$

c. (4 marks)
$$\sum_{k=2}^{\infty} \frac{1}{k (\ln k)^{103}}$$
.

Name:

7. (8 points) (Work must be shown for full marks. Simplify fully.)

a. (2 marks) Let $f(x) = e^{-x^2} = \sum_{n=0}^{\infty} a_n x^n$. Determine a_{10} and a_{11} . (Note: the sum refers to a series expansion centred at x = 0.)

b. (2 marks) Let $g(x) = \int_0^x e^{-t^2} dt = \sum_{n=0}^\infty b_n x^n$. Determine b_{11} and b_{12} . (Note: the sum refers to a series expansion centred at x = 0.)

c. (4 marks) Suppose the function $y(x) = \sum_{n=0}^{\infty} c_n x^n$ given by a power series solves the following differential equation $\frac{dy}{dx} = 2 + x^2 y$ with the initial value y(0) = 1. Determine c_3 and c_4 . Hint: Plug the series into the differential equation.

Name:

8. (8 points) (Work must be shown for full marks. Simplify fully.)

a. (3 marks) Evaluate
$$\int_0^{1/2} f(x) dx$$
 where $f(x) = \sum_{n=0}^{\infty} (3n+2)x^{3n+1}$.
(Your final answer should be in the form of a number.)

b. (5 marks) Determine **all** values of x such that the following series converges.

$$\sum_{n=0}^{\infty} \frac{(n+1)(x+1)^n}{5^n(n+2)}$$

Name:

- 9. (8 points) Consider the iterated map: $x_{n+1} = F(x_n)$ where $F(x) = \frac{3}{2}x(1-x)$ for $0 \le x \le 1$.
 - **a.** (4 marks) Find all fixed points of the iterated map and determine their stability. Hint: use F'(x) to check stability.

b. (2 marks) Sketch the cobweb corresponding to the sequence x_n with $x_0 = 1/8$.

L				
F				-
t t				
F				
1				
L.				
F				
F				-
1				
1				
-				
L				
1				
F				-
F .				
1				
t i				
-				
L				-
E				
F .				
F				
F .				
1				

c. (2 marks) Suppose a sequence $(a_n)_{n\geq 0}$ satisfies the recursive relation $a_{n+1} = F(a_n)$ with $a_0 = 1/8$. Does the series $\sum_{n=0}^{\infty} a_n$ converge? Justify your answer.

10. (12 points) (Work must be shown for full marks. Simplify fully.)

a. (4 marks) Evaluate
$$\int_{1}^{e^2} \frac{\ln(\sqrt{x})}{\sqrt{x}} dx$$
.

b. (4 marks) Evaluate
$$\int_0^1 f(x) dx$$
 where $f(x) = \int_1^x \sin(t^2) dt$.
Hint: Integration by parts!

c. (4 marks) Consider the following improper integral. Evaluate it if it is convergent, or show that it diverges, otherwise:

$$\int_0^\infty \left(\frac{1}{\sqrt{x^2+1}}\right)^3 dx.$$

11. (3 points) (This is a difficult question and will be marked very strictly. You should try this ONLY AFTER you finish all other problems.)

Suppose a sequence $(b_n)_{n\geq 0}$ satisfies the recursive relation

$$b_{n+1} = \beta \frac{b_n}{1+b_n} \; ,$$

where β is a given positive constant. Suppose $b_0 = 1$. Find all **positive** constants β for which the **series** $\sum_{n=0}^{\infty} b_n$ converges. Justify your answer.

Name: _____

Useful Formulas

SUMMATION

$$\sum_{k=1}^{N} k = \frac{N(N+1)}{2} \qquad \qquad \sum_{k=1}^{N} k^2 = \frac{N(N+1)(2N+1)}{6}$$
$$\sum_{k=1}^{N} k^3 = \left(\frac{N(N+1)}{2}\right)^2 \qquad \qquad \sum_{k=0}^{N} r^k = \frac{1-r^{N+1}}{1-r}$$

TRIGONOMETRIC IDENTITIES

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta; \qquad \text{for } \alpha = \beta: \quad \sin(2\alpha) = 2\sin \alpha \cos \alpha$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta; \qquad \text{for } \alpha = \beta: \quad \cos(2\alpha) = 2\cos^2 \alpha - 1$$
$$\sin^2 \alpha + \cos^2 \alpha = 1 \qquad \qquad \tan^2 \alpha + 1 = \sec^2 \alpha = \frac{1}{\cos^2 \alpha}$$

Selected trigonometric values

$$\sin(0) = 0, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{2}\right) = 1, \quad \sin(\pi) = 0$$
$$\cos(0) = 1, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{2}\right) = 0, \quad \cos(\pi) = -1$$

DERIVATIVES

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx} \arctan x = \frac{1}{1+x^2}$$