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Important

1. Simplify all your answers as much as possible and express answers in terms of fractions or constants
such as

√
e or ln(2) rather than decimals.

2. Unless otherwise indicated, show all your work and explain your reasonings clearly!

3. Questions in a section are weighted evenly unless otherwise stated.

4. Formula sheet at the back (you may tear it off and use it for scratch work).
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1. Short-answer-problems. (Full credit will be given for a correct final answer. For partial credit
you must show your work.)

(a) (2 points) Express limn→∞
∑n

k=1
1
ne
−k2/n2

as a definite integral of the form
∫ 1
0 f(x)dx.

Do not evaluate the integral.

ANSWER:

(b) (2 points) Find the limit of the sequence

{
2n3 + 3 sin(n)

5n3 + n

}
n≥1

.

ANSWER:

(c) (2 points) Evaluate lim
x→π

3 sin(x)

(x− π)
. (Simplify your answer as much as possible.)

ANSWER:
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(d) (2 points) Compute
d

dx

(∫ 3x

0
ecos tdt

)
at x = 0.

ANSWER:

(e) (2 points) Find the value of C so that p(x) = Cx−3 is a probability density function on
[1,∞).

ANSWER:
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2. Compute the following integrals:

(a) (3 points)

∫
1

x2 + 2x+ 2
dx.

ANSWER:

(b) (3 points)

∫
x cos(x) dx.

ANSWER:
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(c) (3 points)

∫ π/6

π/12

cos(3x)

sin(3x)
dx.

ANSWER:

(d) (3 points)

∫
arcsin(x) dx.

ANSWER:
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3. (6 points) Find the length of the curve y = 2x3/2 from x = 0 to x = 1
3 .

ANSWER:
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4. The density of a metal bar 3 meters long is is given by ρ(x) = 1√
x+1

kilograms per meter

(0 ≤ x ≤ 3).

(a) (4 points) Find the mass of the bar.

ANSWER:

(b) (4 points) Find the center of mass of the bar.

ANSWER:
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5. Let R be the region bounded between the curve y = − lnx, and the lines y = 0, y = 1, x = 0.

(a) (4 points) Find the volume of the solid obtained by revolving R around the y-axis (see
illustration).

−1 1
x

1

y

R

ANSWER:

(b) (4 points) The solid of part (i) is filled with liquid of varying density. It is given that
liquid density y units from the bottom of the solid is e−y grams per cubic unit. Find the
mass of the liquid inside the solid.

ANSWER:
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6. (a) (13 points) Consider a population that is governed by the logistic differential equation

dN

dt
=

1

2
N

(
1− N

106

)
with initial condition N(0) = 2× 105. N is the population size and t is time measured in
years.

(i) [1 point] Write down the carrying capacity, K.

ANSWER:

(ii) [1 point] The substitution y = N
K , where K is the carrying capacity found in part (ii),

rescales the differential equation to

dy

dt
=

1

2
y(1− y).

Write down the initial condition y(0).

ANSWER:

Note: It is possible to do the remaining parts of this question even if you were unable to
answer (i) or (ii).

(iii) [2 points] Find all steady states of the differential equation in (ii).

ANSWER:
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(iv) [7 points] Solve the differential equation in part (ii) for y(t) with the initial condition
y(0) found in part (ii). For full credit you must show your work.

ANSWER:

(v) [2 points] How long will it take for the population to reach 50% of the carrying capacity?

ANSWER:
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(b) (7 points) An animal population in appropriate units after n years, xn, satisfies the re-
cursion relation

xn+1 =
1

2
xn(1− xn) + xn

and starts with an initial population

x0 =
1

5
.

That is, the sequence {xn}n≥0 is defined by iterating the map g(x) = 1
2x(1− x) + x.

(i) [2 points] Find the population after one year.

ANSWER:

(ii) [2 points] Find all fixed points of this map g.

ANSWER:

(iii) [3 points] Classify the above fixed points as stable or unstable. Justify your answers.

ANSWER:
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7. (a) (6 points) For each of the following series, decide whether or not it converges. Justify
your answers.

(i)
∑∞

n=1
cos4(n)
n2 .

(ii)
∑∞

n=1
n4+3
2n4+n

.
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(b) (6 points) Consider the power series:
∑∞

n=1
2−n
√
n
xn.

(i) Find the radius of convergence of the power series.

ANSWER:

(ii) Find all values of x such that the power series converges.

ANSWER:
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8. (a) (3 points) Find a power series for cos(x2) about x = 0. State (without proof) for which
values of x this power series converges.

ANSWER:

(b) (3 points) Find d8

dx8
(cos(x2)) at x = 0.

ANSWER:
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(c) (3 points) Find the Taylor series for F (x) =
∫ x
0 cos(t2) dt about x = 0. State (without

proof) for which values of x this power series converges.

ANSWER:

(d) (3 points) Use the first 2 non-zero terms in the above Taylor series to estimate
∫ 1/2
0 cos(t2) dt.

(Error estimates are not required.)

ANSWER:
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9. Let x be a continuous random variable taking values in [0, 100] with probability density function
p(x), mean value µ, variance σ2, median value xmed, and cumulative function F (x).

(a) (2 points) Write down the integral which expresses µ in terms of p(x).

ANSWER:

(b) (2 points) Write down the integral which expresses σ2 in terms of p(x) and µ.

ANSWER:

(c) (3 points) If F (1/2) = 1
8 , F (1) = 1

2 , F (2) = 3
4 , and F (3) = 7

8 . Find the probability that
x is greater than 2xmed.

ANSWER:
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(d) (5 points) Show that µ =
∫ 100
0 (1− F (x)) dx.

Hint. The formula for µ in (a) is a good starting point.
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Additional space for work
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Useful Formulæ

Summation

N∑
k=1

k =
N(N + 1)

2

N∑
k=1

k2 =
N(N + 1)(2N + 1)

6

N∑
k=1

k3 =

(
N(N + 1)

2

)2

Trigonometric identities

sin(α+ β) = sinα cosβ + cosα sinβ; for α = β: sin(2α) = 2 sinα cosα

cos(α+ β) = cosα cosβ − sinα sinβ; for α = β: cos(2α) = 2 cos2 α− 1 = cos2 α− sin2 α

cos2(α) =
1 + cos(2α)

2
; sin2(α) =

1− cos(2α)

2

sin2 α+ cos2 α = 1

tan2 α+ 1 = sec2 α =
1

cos2 α

Some useful trigonometric values

sin(0) = 0, sin
(π

6

)
=

1

2
, sin

(π
4

)
=

√
2

2
, sin

(π
3

)
=

√
3

2
, sin

(π
2

)
= 1, sin(π) = 0

cos(0) = 1, cos
(π

6

)
=

√
3

2
, cos

(π
4

)
=

√
2

2
, cos

(π
3

)
=

1

2
, cos

(π
2

)
= 0, cos(π) = −1

Derivatives

d

dx
arcsinx =

1√
1− x2

d

dx
arccosx = − 1√

1− x2

d

dx
arctanx =

1

1 + x2
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