April, 2006	MATH 105	Name
-------------	----------	------

Marks

- [42] 1. Short-Answer Questions. Put your answer in the box provided but show your work also. Each question is worth 3 marks, but not all questions are of equal difficulty.
 - (a) Assume that z(x, y) is a linear function with slope 2 in the x-direction and slope -3 in the y-direction. If z(1, 1) = 4, find z(-2, 1).

Answer:

(b) If
$$f(x,y) = \ln(x^2 + y)$$
, find $\lim_{k \to 0} \frac{f(1+k,0) - f(1,0)}{k}$

Answer:

(c) Let (x_0, y_0) be a critical point of $f(x, y) = -x^2 - y^2 + 6x + 8y - 21$. Find (x_0, y_0) and then find the equation of the tangent plane to the surface f(x, y) at the point $(x_0, y_0, f(x_0, y_0))$.

Answer:

(d) Suppose the marginal revenue in producing x units of a certain product is MR(x) = 300 - 0.2x. Find the change in total revenue if production is increased from 10 to 20 units.

MATH 105 Name _

(e) Find
$$\int \frac{1+x}{x-x^2} dx$$
.

April, 2006

Answer:

(f) If
$$\int_0^1 f(x) dx = 2$$
 and $f(1) = 3$, find $\int_0^1 5x f'(x) dx$.

(g) You are given the following table of values for f(x):

x	1.5	2.0	2.5	3
f(x)	-0.6	0.2	0.4	0.8

Estimate $\int_{1.5}^{3} f(x) dx$ by using the trapezoidal rule with n = 3.

Answer:

(h) Let $p = S(q) = 10(e^{0.02q} - 1)$ be a supply curve, where p denotes the price, and q denotes the quantity supplied. Find the average price over the supply interval [20, 30].

April, 2006 MATH 105 Name ____

Page 4 of 10 pages

(i) Determine whether
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$
 converges or diverges.

Answer:

(j) Find
$$\int_0^1 t \sin(\pi t^2) dt$$
.

Answer:

(k) If k is a nonzero constant and $y = -\frac{k}{t^3}$ is a solution of the differential equation $\frac{dy}{dt} = 6t^2y^2$, find k.

(l) Find the constant c such that the function

$$f(x) = cx^2(1-x), \quad 0 \le x \le 1$$

is a probability density function.

Answer:

(m) Let X be a continuous random variable having the probability density function $f(x) = \frac{3}{x^4}, x \ge 1$. Find the expected value E(X).

Answer:

(n) Let f(x) be the probability density function of a continuous random variable X, where $1 \le x \le 5$. If the area under the graph of y = f(x) from x = 3 to x = 5 is $\frac{1}{3}$, find the probability $P(1 \le X \le 3)$.

Full-Solution Problems. In questions 2–6, justify your answers and show all your work.

[10] 2. Find the total area of all the regions completely enclosed by the graphs of the functions $f(x) = x^3 - 3x + 4$ and g(x) = x + 4.

[12] **3.** For a certain item the demand curve is $p = D(q) = -0.2q^2 + 60$, and the supply curve is $p = S(q) = 0.1q^2 + q + 20$. Find the consumer surplus.

April, 2006 MATH 105 Name _

[12] 4. Suppose that \$100,000 is deposited in an account paying 5% interest with continuous compounding. Also assume that money is continuously withdrawn from the account at a rate of \$10,000 per year. Find the amount of money in the account at the end of 6 years.

April, 2006 MATH 105 Name _____

[12] 5. An open rectangular box without a top is to be constructed from material that costs \$5 per square foot for the bottom and \$2 per square foot for its sides. The bottom of the rectangular box is a square. Use the method of Lagrange multipliers (no credit will be given for any other method) to find the dimensions of the box of greatest volume that can be constructed for \$240. You do not need to show that the answer you compute gives the greatest volume.

- [12] 6. Suppose that money is deposited continuously into a savings account at a rate of 200t dollars per year for 10 years. No money is withdrawn during the 10 year period. The savings account earns 10% interest, compounded continuously.
 - (a) Find the amount of money in the account at the end of 10 years.
 - (b) Find the total amount of interest earned in dollars by the savings account over the 10 year period.

Be sure that this examination has 10 pages including this cov