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1. Short answer questions . Put your answers in the box provided. 3 marks will be given for
correct answers in the box, while at most 1 mark will be given for incorrect answers. Unless
otherwise stated, simplify your answers as much as possible.

(a) Evaluate
∫

1
x lnx

dx.

(b) For what values of α does
∫∞
e

1
x(lnx)α

dx converge?

(c) Find f ′(x) where f(x) =
∫ x2

0
t2dt.
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(d) Use the binomial series to find f (6)(0) where f(x) = 1√
1+x3 (express your answer as a fraction)

(e) Evaluate
∑∞

n=1
1

3n(n−1)!

(f) The waiting time to be served at a certain restaurant is assumed to be exponentially dis-
tributed according to the probability density function ρ(t) = ce−ct for t ≥ 0. It is observed
that 30 out of every 100 customers is served within 5 minutes of ordering. Find c.
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(g) Evaluate limn→∞
∑n

j=1
j2

n3

(h) Estimate the error in approximating e by
∑5

n=0
1
n!

(i) Evaluate limx→0
x2 sin2 x

(1− ex2)2
.
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(j) Find the midpoint rule approximation to
∫ 3

1
1
x
dx with n = 3.
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Full solution problems In problems 2-7, justify your answers and show all your work.

2. Evaluate the following integrals

(a)
∫

x+1
x3+x

dx

(b)
∫
e
√
xdx
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(c)
∫

x2

(1−x2)3/2
dx

(d)
∫ π/3

0
1

sinx−1
dx
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3. (a) Let R be the region under the curve y = 1√
1+x2 for 0 ≤ x ≤ 1. Revolve R around the x axis

to obtain the solid S. Find the x coordinate x̄ of the center of mass of S.

(b) Solve the differential equation y′ = 2xy + ex
2
; y(0) = 2
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4. Find the Taylor series along with Radii of convergence for the following

(a) f(x) =
1

x
about x = 2.

(b) f(x) = x2 arctanx2 about x = 0.
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5. Determine if the following series are convergent or divergent.

(a)
∑∞

n=1
n2

n3+n

(b)
∑∞

n=1
1

en−n2
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6. Define the sequence an recursively by: a1 = 3 and an+1 = 2
3
an + 4

3an
.

(a) Show that 2 ≤ an ≤ 3 for all n.

(b) Prove that {an} converges and evaluate the limit.
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7. Define the sequence {an} recursively by a0 = a1 = 1 and the relation

an+2 =
2n− 1

(n+ 1)(n+ 2)
an.

(a) Show that the series
∑∞

n=0 anx
n converges for all x.
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(b) Verify that f(x) =
∑∞

n=0 anx
n solves the differential equation f ′′ − 2xf ′ + f = 0

.
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FOR ROUGH WORK ONLY...
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FOR ROUGH WORK ONLY...
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