Math 121, Spring Term 2012 Final Exam

April $11^{\text{th}},2012$

Student number:

LAST name:

First name:

Signature:

Instructions

- Do not turn this page over. You will have 150 minutes for the exam (between 8:30–11:00)
- You may not use books, notes or electronic devices of any kind.
- Except for problem 1, solutions should include full justification and be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.
- All parts of a problem have equal value unless noted otherwise.

1	/30
2	/15
3	/16
4	/12
5	/10
6	/12
7	$/5$
Total	/100

1 Short-form answers (30 points)

Write your answer (simplified, as much as possible) in the box provided. Full marks will be given for the correct answer in the box; show your work for part marks.

a. Evaluate $\int_{1}^{2} \frac{x^{2}+2}{x^{2}}$.

Answer:

b. Evaluate $\int_0^{\pi/2} \frac{\cos x}{1+\sin x} dx$.

Answer:

c. Evaluate $\int_{-2012}^{+2012} \frac{\sin x}{\log(3+x^2)} \, \mathrm{d}x$.

d. A function f(x) is always positive, has f(0) = e and satisfies f'(x) = xf(x) for all x. Find this function.

Answer:

e. Express $\lim_{n\to\infty}\sum_{i=1}^{n}\frac{ie^{i/n}}{n^2}$ as a definite integral. Do not evaluate this integral.

Answer:

f. Evaluate $\frac{d}{dx} \left[\int_{x^5}^{-x^2} \cos(e^t) dt \right]$

g. Evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n2^n}$.

Answer:

h. Evaluate $\sum_{n=1}^{\infty} \frac{n+2}{n!} e^n$.

Answer:

i. Evaluate $\lim_{x\to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}$.

j. Find the midpoint rule approximation to $\int_0^{\pi} \sin x \, dx$ with n = 3.

 $\underline{\textbf{FULL-SOLUTION}\ \textbf{PROBLEMS}}$ begin here. Give full justification; in particular state the definitions or results from class that you are using.

2 Integrals (15 points)

Evaluate (with justification)

a. $\int_0^3 (x+1)\sqrt{9-x^2} \, \mathrm{d}x.$

b. $\int \frac{4x+8}{(x-2)(x^2+4)} \, \mathrm{d}x.$

Evaluate (with justification)

c. $\int_{-\infty}^{+\infty} \frac{1}{e^x + e^{-x}} \, \mathrm{d}x.$

3 Convergence (16 points)

In each case determine (with justification!) whether the integral or series converges absolutely, converges but not absolutely, or diverges.

a. $\int_{-\infty}^{+\infty} \frac{x}{x^2+1} \, \mathrm{d}x$

b. $\sum_{n=1}^{\infty} \frac{n^2 - \sin n}{n^6 + n^2}$

In each case determine (with justification!) whether the integral or series converges absolutely, converges but not absolutely, or diverges.

c. $\sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(n^2+1)(n!)^2}$

d. $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^{101}}$

4 Applications (12 points)

a. The probability density function of the random variable X is proportional to

$$f(x) = \begin{cases} \frac{\log x}{x^a} & \text{if } x \ge 1\\ 0 & \text{if } x < 1 \end{cases}.$$

where a > 2. Find the expectation $\mathbb{E}X$.

b. Let R be the finite region bounded by the lines y = 0, y = x and the graph of $y = \cos x$. Let C be the solid obtained by revolving R about the x-axis. Find the volume of C; you may use the constant a such that $a = \cos a$.

5 Convergent Sequence (10 points)

A sequence $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$ satisfies the recursion relation $a_{n+1} = \sqrt{3 + \sin a_n}$ for $n \ge 0$.

a. (1 point) Show that the equation $x = \sqrt{3 + \sin x}$ has a solution.

b. (6 points) Show that $\lim_{n\to\infty} a_n = L$, where L is a solution to equation above.

c. (3 points) Show that equation $x = \sqrt{3 + \sin x}$ has a unique solution.

6 A Power series (12 points)

Let $\cosh(x) = \frac{e^x + e^{-x}}{2}$.

a. Find the power series expansion of cosh(x) about $x_0 = 0$ and determine its interval of convergence. (3 points)

b. Show that $3\frac{2}{3} \le \cosh(2) \le 3\frac{2}{3} + 0.1$. (5 points)

c. Show that $\cosh(t) \le e^{\frac{1}{2}t^2}$ for all t. (4 points)

7 Last problem (5 points)

Let R be the volume (region of space) obtained by rotating the area between the graph of $f(x) = e^{-|x|}$ and the x-axis about the y-axis. The volume R is filled with a liquid which has density $\sin(\frac{\pi}{2}y)$ at height y above the base plane. Show that the mass M of the liquid satisfies

$$\frac{\pi}{4} \le M \le \frac{\pi^2}{8} \,.$$