Math 121, Spring Term 2012
 Final Exam

April $11^{\text {th }}, 2012$

Student number:

LAST name:

First name:

Signature:

Instructions

- Do not turn this page over. You will have 150 minutes for the exam (between 8:30-11:00)
- You may not use books, notes or electronic devices of any kind.
- Except for problem 1, solutions should include full justification and be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.
- All parts of a problem have equal value unless noted otherwise.

1	$/ 30$
2	$/ 15$
3	$/ 16$
4	$/ 12$
5	$/ 10$
6	$/ 12$
7	$/ 5$
Total	$/ 100$

1 Short-form answers (30 points)

Write your answer (simplified, as much as possible) in the box provided. Full marks will be given for the correct answer in the box; show your work for part marks.
a. Evaluate $\int_{1}^{2} \frac{x^{2}+2}{x^{2}}$.
Answer:
b. Evaluate $\int_{0}^{\pi / 2} \frac{\cos x}{1+\sin x} \mathrm{~d} x$.

> Answer:
c. Evaluate $\int_{-2012}^{+2012} \frac{\sin x}{\log \left(3+x^{2}\right)} \mathrm{d} x$.
Answer:
d. A function $f(x)$ is always positive, has $f(0)=e$ and satisfies $f^{\prime}(x)=x f(x)$ for all x. Find this function.
Answer:
e. Express $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i e^{i / n}}{n^{2}}$ as a definite integral. Do not evaluate this integral.
Answer:
f. Evaluate $\frac{d}{d x}\left[\int_{x^{5}}^{-x^{2}} \cos \left(e^{t}\right) \mathrm{d} t\right]$
Answer:
g. Evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 2^{n}}$.

Answer:
h. Evaluate $\sum_{n=1}^{\infty} \frac{n+2}{n!} e^{n}$.

Answer:
i. Evaluate $\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{x^{3}}{6}}{x^{5}}$.
Answer:
j. Find the midpoint rule approximation to $\int_{0}^{\pi} \sin x \mathrm{~d} x$ with $n=3$.
Answer:

FULL-SOLUTION PROBLEMS begin here. Give full justification; in particular state the definitions or results from class that you are using.

2 Integrals (15 points)

Evaluate (with justification)
a. $\quad \int_{0}^{3}(x+1) \sqrt{9-x^{2}} \mathrm{~d} x$.
b. $\quad \int \frac{4 x+8}{(x-2)\left(x^{2}+4\right)} \mathrm{d} x$.

Evaluate (with justification)
c. $\quad \int_{-\infty}^{+\infty} \frac{1}{e^{x}+e^{-x}} \mathrm{~d} x$.

3 Convergence (16 points)

In each case determine (with justification!) whether the integral or series converges absolutely, converges but not absolutely, or diverges.
a. $\quad \int_{-\infty}^{+\infty} \frac{x}{x^{2}+1} \mathrm{~d} x$
b. $\quad \sum_{n=1}^{\infty} \frac{n^{2}-\sin n}{n^{6}+n^{2}}$

In each case determine (with justification!) whether the integral or series converges absolutely, converges but not absolutely, or diverges.
c. $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{\left(n^{2}+1\right)(n!)^{2}}$
d. $\quad \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\log n)^{101}}$

4 Applications (12 points)

a. The probability density function of the random variable X is proportional to

$$
f(x)=\left\{\begin{array}{ll}
\frac{\log x}{x^{a}} & \text { if } x \geq 1 \\
0 & \text { if } x<1
\end{array} .\right.
$$

where $a>2$. Find the expectation $\mathbb{E} X$.
b. Let R be the finite region bounded by the lines $y=0, y=x$ and the graph of $y=\cos x$. Let C be the solid obtained by revolving R about the x-axis. Find the volume of C; you may use the constant a such that $a=\cos a$.

5 Convergent Sequence (10 points)

A sequence $\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{R}$ satisfies the recursion relation $a_{n+1}=\sqrt{3+\sin a_{n}}$ for $n \geq 0$.
a. (1 point) Show that the equation $x=\sqrt{3+\sin x}$ has a solution.
b. (6 points) Show that $\lim _{n \rightarrow \infty} a_{n}=L$, where L is a solution to equation above.
c. (3 points) Show that equation $x=\sqrt{3+\sin x}$ has a unique solution.

6 A Power series (12 points)

Let $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$.
a. Find the power series expansion of $\cosh (x)$ about $x_{0}=0$ and determine its interval of convergence. (3 points)
b. Show that $3 \frac{2}{3} \leq \cosh (2) \leq 3 \frac{2}{3}+0.1$. (5 points)
c. Show that $\cosh (t) \leq e^{\frac{1}{2} t^{2}}$ for all t. (4 points)

7 Last problem (5 points)

Let R be the volume (region of space) obtained by rotating the area between the graph of $f(x)=$ $e^{-|x|}$ and the x-axis about the y-axis. The volume R is filled with a liquid which has density $\sin \left(\frac{\pi}{2} y\right)$ at height y above the base plane. Show that the mass M of the liquid satisfies

$$
\frac{\pi}{4} \leq M \leq \frac{\pi^{2}}{8}
$$

