Marks
[15] 1. If two resistors of resistance R_{1} and R_{2} are wired in parallel, then the resulting resistance R satisfies the equation $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$. Use the linear or differential approximation to estimate the change in R if R_{1} decreases from 2 to 1.9 ohms and R_{2} increases from 8 to 8.1 ohms.
[10] 2. Assume that the directional derivative of $w=f(x, y, z)$ at a point P is a maximum in the direction of the vector $2 \mathbf{i}-\mathbf{j}+\mathbf{k}$, and the value of the directional derivative in that direction is $3 \sqrt{6}$.
(a) Find the gradient vector of $w=f(x, y, z)$ at P. [5\%]
(b) Find the directional derivative of $w=f(x, y, z)$ at P in the direction of the vector $\mathbf{i}+\mathbf{j}$. 5%]

April 11, 2006 MATH 200 Name Page 4 of 9 pages
[10] 3. Use the Second Derivative Test to find all values of the constant c for which the function $z=x^{2}+c x y+y^{2}$ has a saddle point at $(0,0)$.
\qquad
[15] 4. Use the Method of Lagrange Multipliers (no credit will be given for any other method) to find the radius of the base and the height of a right circular cylinder of maximum volume which can be fit inside the unit sphere $x^{2}+y^{2}+z^{2}=1$.

April 11, 2006 MATH 200 Name
[10] 5. Let $z=f(x, y)$ where $x=2 s+t$ and $y=s-t$. Find the values of the constants a, b and c such that

$$
a \frac{\partial^{2} z}{\partial x^{2}}+b \frac{\partial^{2} z}{\partial x \partial y}+c \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial^{2} z}{\partial s^{2}}+\frac{\partial^{2} z}{\partial t^{2}}
$$

You may assume that $z=f(x, y)$ is a smooth function so that the Chain Rule and Clairaut's Theorem on the equality of the mixed partial derivatives apply.

April 11, 2006 MATH 200 Name
[10] 6. Combine the sum of the two interated double integrals

$$
\int_{y=0}^{y=1} \int_{x=0}^{x=y} f(x, y) d x d y+\int_{y=1}^{y=2} \int_{x=0}^{x=2-y} f(x, y) d x d y
$$

into a single interated double integral with the order of integration reversed.

April 11, 2006 MATH 200 Name Page 8 of 9 pages
[15] 7. Evaluate the iterated double integral $\int_{x=0}^{x=2} \int_{y=0}^{y=\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d y d x$.

April 11, 2006 MATH 200 Name
[15] 8. Consider the region E in 3-dimensions specified by the spherical inequalities $1 \leq \rho \leq 1+\cos \varphi$.
(a) Draw a reasonably accurate picture of E in 3-dimensions. Be sure to show the units on the coordinates axes. [5\%]
(b) Find the volume of E. [10\%]

Be sure that this examination has 9 pages

