The University of British Columbia
 Final Examination - December, 2010
 Mathematics 200

1. Let $z=f(x, y)=\frac{2 y}{x^{2}+y^{2}}$.
(a) Sketch the level curves of $f(x, y)$
(b) Find the tangent plane and normal line to the surface $z=f(x, y)$ at $(x, y)=(-1,2)$.
(c) Find an approximate value for $f(-0.8,2.1)$.
2. Suppose the function $T=F(x, y, z)=3+x y-y^{2}+z^{2}-x$ describes the temperature at a point (x, y, z) in space, with $F(3,2,1)=3$.
(a) Find the directional derivative of T at $(3,2,1)$, in the direction of the vector $\mathbf{j}+2 \mathbf{k}$ $=\langle 0,1,2\rangle$
(b) At the point $(3,2,1)$, in what direction does the temperature decrease most rapidly?
(c) Moving along the curve given by $x=3 e^{t}, y=2 \cos t, z=\sqrt{1+t}$, find $\frac{d T}{d t}$, the rate of change of temperature with respect to t, at $t=0$.
(d) Suppose $\mathbf{i}+5 \mathbf{j}+a \mathbf{k}$ is a vector that is tangent to the temperature level surface $T(x, y, z)=$ 3 at $(3,2,1)$. What is a ?
3. Find $\frac{\partial U}{\partial T}$ and $\frac{\partial T}{\partial V}$ at $(1,1,2,4)$ if (T, U, V, W) are related by

$$
(T U-V)^{2} \ln (W-U V)=\ln 2
$$

4 (a) For the function

$$
z=f(x, y)=x^{3}+3 x y+3 y^{2}-6 x-3 y-6 .
$$

Classify [as local maxima, minima, or saddle points] all critical points of $f(x, y)$
(b) Find the point $P=(x, y, z)$ (with x, y and $z>0$) on the surface $x^{3} y^{2} z=6 \sqrt{3}$ that is closest to the origin.
5. (a) D is the region bounded by the parabola $y^{2}=x$ and the line $y=x-2$.

Sketch D and evaluate J where

$$
J=\iint_{D} 3 y d A
$$

(b) Sketch the region of integration and then evaluate the integral I :

$$
I=\int_{0}^{4} \int_{\frac{1}{2} \sqrt{x}}^{1} e^{y^{3}} d y d x
$$

6. Let E be the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=2$ and below by the paraboloid $z=x^{2}+y^{2}$. Find the centroid of E.
7. Let T denote the tetrahedron bounded by the coordinate planes $x=0, y=0, z=0$ and the plane $x+y+z=1$.
Compute

$$
K=\iiint_{T} \frac{1}{(1+x+y+z)^{4}} d V
$$

8. Evaluate $W=\iiint_{Q} x z d V$, where Q is an eighth of the sphere $x^{2}+y^{2}+z^{2} \leq 9$ with $x, y, z \geq 0$.
