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Question 1: [12 marks]

Solve each one of the following first-order initial value problems for a real-valued solution y(t) in explicit
form. Also, determine the domain of definition for each solution.

(a) y′ = y sin t + 2te− cos t, y(0) = 1.

(b) 1 − (1 − t)yy′ = 0, y(0) = 1.

Solution:

(a) Rewrite the eqn in the normal form y′ + (− sin t)y = 2te− cos t. Thus the integrating factor is
µ(t) = e

R

(− sin t)dt = ecos t. Thus

(

ecos ty
)

′

= ecos t
(

2te− cos t
)

= 2t ⇒ ecos ty =

∫

(2t)dt = t2 + C ⇒ y(t) = e− cos t(t2 + C).

y(0) = 1 ⇒ C = e ⇒ y(t) = e− cos t(t2 + e). It is define on (−∞, ∞).

(b) This eqn is not exact but is separable.

yy′ =
1

1 − t
⇒ 1

2
y2(t) = − ln |t − 1| + C ⇒ y2(t) = − ln(t − 1)2 + C ⇒ y(t) = ±

√

C − ln(t − 1)2.

y(0) = 1 ⇒ C = 1 ⇒ y(t) =
√

1 − ln(t − 1)2. It is define on the interval (1 −√
e, 1).
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Question 2: [12 marks]

Answer “True” or “False” to the statements below. Put your answers in the boxes. (20 points)

(a) Suppose the Wronskian of two functions f(t) and g(t) is W (f, g)(t) = t(t − 1) which is zero at
t = 0, 1. Then, f(t) and g(t) must be linearly dependent functions.

False.

(b) The Laplace transform of the initial value problem y ′′′ + y′′ + y′ = 0, y(0) = 1, y′(0) = 2, y′′(0) = 3
yields Y (s) = (s2 + 3s + 6)/(s3 + s2 + s).

True.

(c) The equation y′′+γy′+9y = cos(ωt) describes a periodically forced spring-mass system. The larger
the value of the damping coefficient γ the closer is the maximum resonance frequency (ωmax) to the
natural frequency ω0 = 3.

False.

(d) For a linear system ~x′ = A~x, ~x1(t) = ~v1e
λ1t and ~x2(t) = t~v1e

λ1t form a fundamental set of solutions
if λ1 is the repeated eigenvalue of A with one corresponding eigenvector ~v1.

False.
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Question 3: [14 marks]

Consider the following initial value problem:

a1y
′′(t) + a2y

′(t) + a3y(t) = f(t), y(0) = b1, y′(0) = b2, f(t) =







0, t < 1
17, 1 ≤ t < 2
0, t ≥ 2

where a1, a2, a3, b1, and b2 are constants.

(a) Use the method of Laplace Transforms to solve for Y (s) = L{y(t)} in terms of a1, a2, a3, b1, and
b2.

(b) Suppose a1 = 1, a2 = −3, a3 = 2, b1 = b2 = 0. Calculate y(t) = L−1{Y (s)} (the solution to the
initial value problem).

Solution:

(a) Express f(t) in terms of step functions: f(t) = 17[u(t − 1) − u(t − 2)] = 17[u1(t) − u2(t)]. Apply
Laplace transform on both sides of the eqn:

(a1s
2 + a2s + a3)Y (s) = a1b1s + a1b2 + a2b1 + 17

[

e−s

s
− e−2s

s

]

⇒

Y (s) =
a1b1s + a1b2 + a2b1

a1s2 + a2s + a3
+

17(e−s − e−2s)

s(a1s2 + a2s + a3)
.

(b) For a1 = 1, a2 = −3, a3 = 2, b1 = b2 = 0, we obtain

Y (s) =
17(e−s − e−2s)

s(s2 − 3s + 2)
=

17(e−s − e−2s)

s(s − 1)(s − 2)
= 17(e−s − e−2s)

[

A

s
+

B

s − 1
+

C

s − 2

]

.

Using the partial fraction theorem, we obtain

A =

[

1

(s − 1)(s − 2)

]

s=0

=
1

2
, B =

[

1

s(s − 2)

]

s=1

= −1, C =

[

1

s(s − 1)

]

s=2

=
1

2
.

Thus,

y(t) = L−1{Y (s)} = L−1

{

17

2
(e−s − e−2s)

[

1

s
− 2

s − 1
+

1

s − 2

]}

=
17

2

[

u1(t)(1 − 2et−1 + e2(t−1)) + u2(t)(1 − 2et−2 + e2(t−2))
]

.
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Question 4: [14 marks]

Consider the following system of nonhomogeneous equations

~x′(t) =

[

1 2
2 1

]

~x +

[

f1(t)
f2(t)

]

.

(a) Calculate the general solution given that f1(t) = 0, f2(t) = 0.

(b) Sketch the solution in part (a), analyze the stability and classify the critical point.

(c) Calculate the solution given that f1(t) = e−t, f2(t) = 1.

Solution:

(a) Tr = 2, Det = 1 − 4 = −3 ⇒ λ2 − 2λ − 3 = (λ + 1)(λ − 3) = 0 ⇒ λ1 = −1, λ2 = 3.

For λ1 = −1, Eλ1
= N

[

2 2
2 2

]

=

[

1
−1

]

= ~v1.

For λ2 = 3, Eλ1
= N

[

−2 2
2 −2

]

=

[

1
1

]

= ~v2.

Therefore, ~x(t) = c1~v1e
λ1t + c1~v2e

λ2t = c1

[

1
−1

]

e−t + c2

[

1
1

]

e3t =

[

e−t e3t

−e−t e3t

] [

c1

c2

]

= Y (t)~c.

(b) See the figure. Thus ~x = ~0 is a saddle point and is unstable.

(c) For the nonhomogeneous system, ~x(t) = Y (t)[~c + ~u(t)] where

~u(t) =

∫

Y −1(t)~bdt =

∫

1

2

[

et −et

e−3t e−3t

] [

e−t

1

]

dt =
1

2

∫
[

1 − et

e−4t + e−3t

]

dt =
1

2

[

t − et

− e−4t

4
− e−3t

3

]

.

~x(t) = Y (t)[~c + ~u(t)] = c1

[

1
−1

]

e−t + c2

[

1
1

]

e3t + 1
2

[

1
−1

]

te−t − 1
8

[

1
1

]

e−t + 1
3

[

−2
1

]

.
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Question 5: [12 marks]

Consider the following slope field of the differential equation dy
dt

= f(t, y).

1

2

3

4

5

y(t)

–0.4 –0.2 0.2 0.4 0.6 0.8 1

t

(a) Euler’s method with step size h = 0.2 is being used to estimate y(1). Let y(0) = 1, tn = nh for
n = 1, 2, 3, . . . , 5 and yn be the estimate of y(tn). Plot the 6 points pn = (tn, yn), n = 0, . . . , 5 on
the graph.

(b) The table of values show the estimates of y(2) for various step sizes using Euler’s method and
Improved Euler’s method. Assume the magnitude of the error for each method has the form Khp,
where h is the step size used and K, p are constants. Estimate the largest step size h so that the
error using the improved Euler method is accurate to within ±10−2.

step size h Euler’s method estimate Improved Euler estimate
0.3 271.75 291.50
0.1 291.95 299.50

Solution:
(a)
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1

2

3

4

5

y(t)

–0.4 –0.2 0.2 0.4 0.6 0.8 1

t

(b)

(1) y(2) = 291.50 + K(0.3)2 + O(h3)

(2) y(2) = 299.50 + K(0.1)2 + O(h3)

(1) − (2) ⇒ 0 = −8 + K(0.08) ⇒ K = 100

The error using improved Euler’s method is E = Kh2 + O(h3), where K = 100 . We want E ≤ 10−2

so:

100h2 ≤ 10−2 ⇒ h2 ≤ 10−2

100
⇒ h2 ≤ 10−4 ⇒ h ≤ 10−2.

So the largest step size that can be used is h = 0.01 .
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Question 6: [16 marks]

These questions do not require lengthy calculations. Put your answers in the boxes.

(a) For what value of the real parameter a is the following equation exact? Find the general solution

for that value of a. eay + (a2 − xe−y + sin y)
dy

dx
= 0?

a = −1; y − cos y + xe−y = C.

(b) For the nonhomogeneous equation y′′ + 4y′ + 13y = e−2t sin(3t), write down the correct form of a
particular solution that contains the undetermined coefficients (do not calculate those coefficients).

yp(t) = t[A cos(3t) + B sin(3t)]e−2t.

(c) Given that y1(t) = t is a solution to t2y′′ + ty′ − y = 0, t > 0, find a second solution that is linearly
independent of y1(t).

y2(t) = t−1 or c
t

for any constant c 6= 0.

(d) Express the solution of the initial value problem y′′ + 2y′ + y = h(t), y(0) = y′(0) = 1 in a form
that contains h(t) in an integral.

y(t) = e−t + 2te−t +

∫ t

0

τe−τh(t − τ)dτ or e−t + 2te−t +

∫ t

0

(t − τ)e−(t−τ)h(τ)dτ

Page 8 of 14



Math 215/255 Final Name:

Question 7: [20 marks]

For the following two different problems, you need to choose one and only one to solve. Credit will be
given to the solution of either 7.I or 7.II but not to both!

7.I Consider the following predator-prey model, given by

x′ = x(1 − γx − 0.5y)

y′ = y(−0.25 + 0.5x).

Let γ = 0.5. in parts (a), (b), (c) and (d).

(a) Find all the critical points (steady states) of this system of differential equations. Represent these
points with a black dot in the phase plane provided below.

(b) For each critical point, discuss its local stability properties and classify its type. Determine the
trajectory flows near each one of these points.

(c) Draw a rough phase portrait for the system using the provided phase plane (please try it on a
separate draft before putting down the final picture).

(d) Determine the long-term or limiting behaviour of x(t) and y(t) as t → ∞ for any initial condition
x(0), y(0) > 0. Interpret the results in terms of the populations of the two species.

(e) For γ = 0, determine how the number, location, and type of the critical points change. Without
attempting a detailed analysis, what can you say about the change in the limiting behaviour of
x(t) and y(t) for x(0), y(0) > 0?

Solution:

(a) In order to find the critical points, we shall find the x- and y-nullclines.
The x-nullclines are: x = 0 (line) and y = 2 − x (line).
The y-nullclines are: y = 0 (line) and x = 1/2 (line).
Thus the critical points in this case are: (0, 0), (2, 0) and (1/2, 3/2).
See the sketch for plotting these points.

(b) Let’s begin first by finding the Jacobian matrix:

J =

(

1 − x − 0.5y −0.5x
0.5y −0.25 + 0.5x

)

(i) At (0, 0):

J(0,0) =

(

1 0
0 −0.25

)

. The eigenvalues are m1 = 1 > 0 and m2 = −0.25 < 0.

Therefore (0, 0) is an unstable saddle point. The eigenvectors are (1, 0)T and (0, 1)T .

(ii) At (2, 0):

J(2,0) =

(

−1 −1
0 0.75

)

. The eigenvalues are m1 = −1 < 0 and m2 = 0.75 > 0.

Therefore (2, 0) is an unstable saddle point. The eigenvectors are (1, 0)T and (1,−1.75)T .
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(ii) At (1/2, 3/2):

J(1/2,3/2) =

(

−1/4 −1/4
3/4 0

)

. The eigenvalues are m1 =
−1

8
+ i

√
11

8
and m2 =

−1

8
− i

√
11

8
.

We have two complex conjugate roots with negative real parts. Therefore (1/2, 3/2) is an
asymptotically stable spiral sink.

(c) See the sketch of phase portrait in the figure.

(d) Since the critical point (1/2, 3/2) is the only asymptotically stable critical point, the long term
behavior of x = (x, y)T will approach that equilibrium solution. In other words, limt→∞ x(t) =
(1/2, 3/2). This means that the two species involved in this predator-prey model will both survive
and their populations will gradually approach (1/2, 3/2). The solutions curves for x and y will
oscillate with decaying amplitudes toward that equilibrium solution.

(e) When γ = 0, then one critical point will disappear and end up with only two of them. These
two critical points are (0, 0) and (1/2, 2) (the y-nullcline y = 2 − x in the previous case becomes
y = 2). The current model is identical to the standard simple predator-prey model we are familiar
with. The critical point (0, 0) stays as an unstable equilibrium solution, but the critical point
(1/2, 2) is a stable center. The phase portrait will show a closed curve reflecting an oscillatory
behavior in both populations, x and y, with constant amplitudes for all time.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 1: Phase portrait of the system.
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7.II A mass-spring system is governed by the following initial value problem

my′′(t) + γy′(t) + ky(t) = A sin(ωt), y(0) = 0, y′(0) = −4

where the positive constants m, γ, k, A and ω are the mass, damping coefficient, spring constant,
forcing amplitude and forcing frequency, respectively.

(a) Suppose the system is undamped. Determine the constraints (if any) on the constants m, γ, k,
A and ω so that the solution exhibits pure resonance.

(b) Determine an approximate value of the resonant frequency given that m = 2, k = 5, A = 7, and
γ << 1.

(c) Sketch the steady-state solution to the initial value problem given m = 1, γ = 0, k = 16, A = 36,
and ω = 5.

(d) Suppose the general solution can be written in the form

y(t) = A0e
−γt/(2m) cos(ω0t + δ) + A1 cos(ωt + φ)

Determine the constraints (if any) on the constants m, γ, A0, A1, ω0, ω, δ, φ so that the solution
exhibits the phenomenon of beat (beat refers to a high frequency vibration with an amplitude
that varies periodically with a much slower frequency).

Solution:

(a) Since the driving term is periodic, pure resonance will be observed when the driving frequency

ω is equal to the natural frequency ω0 =
√

k
m

, i.e. ω =
√

k
m

. This implies that γ = 0 and the

homogeneous solution yh can be written in the form: yh(t) = A0 cos(ω0t + δ). The driving amplitude
A 6= 0.
(b) The resonant frequency yields the maximum steady state amplitude and occurs at about ω ≈ ω0 =
√

5/2.
(c) The characteristic equation is λ2 + 16 = 0, so λ = ±4i and the homogeneous solution has the form:

yh(t) = C1 cos(4t) + C2 sin(4t)

The particular solution has the form yp(t) = D1 cos(5t) + D2 sin(5t) and substituting yp into the DE
gives:

y′′ + 16y = 36 sin(5t) ⇒
[

− 25D1 cos(5t)− 25D2 sin(5t)
]

+
[

16D1 cos(5t) + 16D2 sin(5t)
]

= 36 sin(5t)

⇒ −9D1 cos(5t) − 9D2 sin(5t) = 36 sin(5t) ⇒ D1 = 0 and D2 = −4.

So the general solution has the form:

y(t) = yh(t) + yp(t) = C1 cos(4t) + C2 sin(4t) − 4 sin(5t)

⇒ y′(t) = −4C1 sin(4t) + 4C2 cos(4t) − 20 cos(5t)
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Applying the initial condition y(0) = 0 ⇒ C1 = 0 and y′(0) = −4 ⇒ C2 = 4. Therefore

y(t) = 4 sin(4t) − 4 sin(5t)

It is easier to sketch the solution if we apply the trig identity sin(a − b) − sin(a + b) = 2 sin(b) cos(a).
This implies sin(c) − sin(d) = 2 sin

(

d−c
2

)

cos
(

c+d
2

)

so

y(t) = 8 sin(t/2) cos(9t/2)

–8

–6

–4

–2

0

2

4

6

8

5 10 15 20 25

t

(d) The forcing term is periodic, so in order for the solution to exhibit the phenomenon of beats, the
homogeneous solution must be periodic, i.e. γ = 0 . In this case

yh = C1 cos(ω0t) + C2 sin(ω0t),

where ω0 =
√

k/m. The particular solution can be put in the form yp = ts (A1 cos(ωt + φ)), but we

want s = 0, so ω 6= ω0 =
√

k/m . The general solution is then

y(t) = yh(t) + yp(t) = A0 cos(ω0t + δ) + A1 cos(ωt + φ).

The phenomenon of beats will be observed whenever |A0| = |A1| .

The phase angles δ and φ are unconstrained .
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