THE UNIVERSITY OF BRITISH COLUMBIA Sessional Examinations – April 2009 MATHEMATICS 215

TIME: 2.5 hours

NO AIDS ARE PERMITTED. Note that the maximum number of points is 110. A score of N/110 will be treated as N/100. Also note that this exam has **three** pages.

(15) 1. Consider the differential equation $\frac{dy}{dx} = 2x - y$. (*)

- (a) Find the general solution of (*).
- (b) Find a particular solution (is there only one?) of (*) satisfying the initial condition y(0) = -2.
- (c) Sketch the solution curves of (*).
- (10) 2. Find the inverse function f(t) of the Laplace transform for

(a)
$$F(s) = \frac{s}{s^2 - s - 2}$$
; (b) $F(s) = \frac{1}{s^2} \left[e^{-s} - (s^2 + s)e^{-2s} \right]$.
In each case, evaluate $f(3)$.

(15) 3. Solve the initial value problem: $y'' + 4y = \cos t$, y(0) = y'(0) = 0.

(15) 4. Solve the following initial value problem for t > 0 and sketch its solution: $y'' - y' = \delta(t - \pi), \quad y(0) = 1, \ y'(0) = 0.$

[Note that $\delta(t)$ is the Dirac delta function.]

(10) 5. Find the general solution of each of the following differential equations:

(a)
$$y'' + 2y' + y = 0;$$
 (b) $\frac{d^4 y}{dx^4} + 4\frac{d^2 y}{dx^2} = 0.$

(25) 6. (a) Solve the initial value problem

$$\frac{dx}{dt} = x - 3y,$$
$$\frac{dy}{dt} = 3x + 7y,$$

with x(0) = 0, y(0) = 1.

- (b) Sketch the trajectory of the solution of (a) in the *xy*-phase plane for $-\infty < t < \infty$, indicating by arrows the direction of increasing *t*.
- (c) Solve the initial value problem

$$\frac{dx}{dt} = x - 3y + 1,$$
$$\frac{dy}{dt} = 3x + 7y + 1,$$
with $x(0) = 0, y(0) = 1.$

(20) 7. Consider the system

$$\frac{dx}{dt} = -y(y-2),$$
$$\frac{dy}{dt} = (x-2)(y-2),$$

- for t > 0.
- (a) Sketch the y(t) component of the solution of this system for each of the following two sets of initial conditions:
 - (i) x(0) = 1, y(0) = 2;
 - (ii) x(0) = 1, y(0) = 3.
- (b) Suppose one has the initial condition $x(0) = \alpha$, $y(0) = \beta$. Find all values of α and β for which

 $\lim_{t \to \infty} x(t) = A \text{ and } \lim_{t \to \infty} y(t) = B \text{ both hold for some constants } A \text{ and } B.$

(c) Find A and B.

TABLE OF INFORMATION

FUNCTION	LAPLACE TRANSFORM
f(t)	F(s)
f'(t)	sF(s) - f(0)
$u_a(t)$	$\frac{e^{-as}}{s}$
$u_a(t)f(t-a)$	$e^{-as}F(s)$
sin t	$\frac{1}{s^2 + 1}$
cost	$\frac{s}{s^2 + 1}$
$\int_{0}^{t} f(\tau) d\tau$	$\frac{F(s)}{s}$
tf(t)	-F'(s)
$\int_{0}^{t} f(\tau)g(t-\tau)d\tau$	F(s)G(s)
$\delta(t-a)$	e^{-as}
$e^{at}f(t)$	F(s-a)