THE UNIVERSITY OF BRITISH COLUMBIA

Sessional Examinations - April 2009

MATHEMATICS 215

TIME: 2.5 hours
NO AIDS ARE PERMITTED. Note that the maximum number of points is 110. A score of N/110 will be treated as N/100. Also note that this exam has three pages.
(15) 1. Consider the differential equation $\frac{d y}{d x}=2 x-y$.
(a) Find the general solution of (*).
(b) Find a particular solution (is there only one?) of $\left({ }^{*}\right)$ satisfying the initial condition $y(0)=-2$.
(c) Sketch the solution curves of $(*)$.
(10) 2. Find the inverse function $f(t)$ of the Laplace transform for
(a) $F(s)=\frac{s}{s^{2}-s-2}$;
(b) $F(s)=\frac{1}{s^{2}}\left[e^{-s}-\left(s^{2}+s\right) e^{-2 s}\right]$.

In each case, evaluate $f(3)$.
(15) 3. Solve the initial value problem: $y^{\prime \prime}+4 y=\cos t, \quad y(0)=y^{\prime}(0)=0$.
(15) 4. Solve the following initial value problem for $t>0$ and sketch its solution:

$$
y^{\prime \prime}-y^{\prime}=\delta(t-\pi), \quad y(0)=1, y^{\prime}(0)=0 .
$$

[Note that $\delta(t)$ is the Dirac delta function.]
(10) 5. Find the general solution of each of the following differential equations:
(a) $y^{\prime \prime}+2 y^{\prime}+y=0$;
(b) $\frac{d^{4} y}{d x^{4}}+4 \frac{d^{2} y}{d x^{2}}=0$.
(25) 6. (a) Solve the initial value problem

$$
\begin{aligned}
& \frac{d x}{d t}=x-3 y \\
& \frac{d y}{d t}=3 x+7 y
\end{aligned}
$$

with $x(0)=0, y(0)=1$.
(b) Sketch the trajectory of the solution of (a) in the $x y$-phase plane for $-\infty<t<\infty$, , indicating by arrows the direction of increasing t.
(c) Solve the initial value problem

$$
\begin{aligned}
& \qquad \frac{d x}{d t}=x-3 y+1, \\
& \frac{d y}{d t}=3 x+7 y+1, \\
& \text { with } x(0)=0, y(0)=1 .
\end{aligned}
$$

(20) 7. Consider the system

$$
\begin{aligned}
& \frac{d x}{d t}=-y(y-2), \\
& \frac{d y}{d t}=(x-2)(y-2),
\end{aligned}
$$

for $t>0$.
(a) Sketch the $y(t)$ component of the solution of this system for each of the following two sets of initial conditions:
(i) $x(0)=1, y(0)=2$;
(ii) $x(0)=1, y(0)=3$.
(b) Suppose one has the initial condition $x(0)=\alpha, y(0)=\beta$. Find all values of α and β for which
$\lim _{t \rightarrow \infty} x(t)=A$ and $\lim _{t \rightarrow \infty} y(t)=B$ both hold for some constants A and B.
(c) Find A and B.

TABLE OF INFORMATION

FUNCTION	LAPLACE TRANSFORM
$f(t)$	$F(s)$
$f^{\prime}(t)$	$s F(s)-f(0)$
$u_{a}(t)$	$\frac{e^{-a s}}{s}$
$u_{a}(t) f(t-a)$	$\frac{e^{-a s} F(s)}{s^{2}+1}$
$\sin t$	$\frac{1}{s^{2}+1}$
$\cos t$	$\frac{F(s)}{s}$
$\int_{0}^{t} f(\tau) d \tau$	
$t f(t)$	$-F^{\prime}(s)$
$e_{0}^{t} f(\tau) g(t-\tau) d \tau$	$F(s) G(s)$
$\delta(t-a)$	$e^{a s}$

