THE UNIVERSITY OF BRITISH COLUMBIA
Sessional Examinations - April 2011

MATHEMATICS 215

TIME: 3 hours

NO AIDS ARE PERMITTED. Note that the maximum number of points is 67. A score of $\mathrm{N} / 67$ will be treated as $\mathrm{N} / 55$, If $\mathrm{N} \geq 55$, then your mark will be $55 / 55$. Also note that this exam has three pages. The value of each question is indicated.
(5) 1. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2 y-x}{2 x} . \tag{1}
\end{equation*}
$$

(5) 2. Find the general solution of the system of differential equations

$$
\left.\begin{array}{l}
\frac{d x}{d t}=-2 x \tag{2}\\
\frac{d y}{d t}=x-2 y
\end{array}\right\}
$$

(5) 3. Sketch the trajectories of the solutions of system (2) in the $x y$-phase plane for $-\infty<t<\infty$, indicating by arrows the direction of increasing t.
(3) 4. Sketch the $y(t)$ component of solutions of system (2).
(2) 5. Suppose $x=X(t), y=Y(t)$, is the solution of system (2) satisfying the initial conditions $x(0)=10.12223, y(0)=7.41396$. Find $\lim _{t \rightarrow \infty} X(t), \lim _{t \rightarrow \infty} Y(t)$.
6. Consider the initial value problem (IVP)

$$
\left.\begin{array}{l}
\frac{d x}{d t}=-2 x+A \\
\frac{d y}{d t}=x-2 y+B e^{-2 t} \tag{3}\\
x(0)=\alpha, \quad y(0)=\beta
\end{array}\right\}
$$

where α, β, A and B are constants.
(a) Find $\lim _{t \rightarrow \infty} x(t), \lim _{t \rightarrow \infty} y(t)$ for the solution of the IVP (3).
(b) When the constants $\alpha=\beta=0$, solve the IVP (3) for the following cases.
(i) $A=1, B=0$;
(ii) $A=0, B=1$.
7. Consider the initial value problem (IVP)

$$
\begin{align*}
& x^{\prime \prime}+x^{\prime}= \begin{cases}1, & 0<t \leq 1, \\
e^{-t}, & t \geq 1,\end{cases} \tag{4}\\
& x(0)=x^{\prime}(0)=0 . \tag{14}
\end{align*}
$$

(a) Use two different methods to solve the IVP (4).
(b) Which method is better? Why?
(c) Find $\lim _{t \rightarrow \infty} x(t)$ for the solution of the IVP (4).
(d) Would the answer in part (c) change if one used different initial conditions? Give a reason for your answer.
8. Consider the system of differential equations

$$
\left.\begin{array}{l}
\frac{d x}{d t}=x^{2}+y, \tag{5}\\
\frac{d y}{d t}=2 x+y .
\end{array}\right\}
$$

(2) (a) Find the critical points of the system (5).
(10) (b) Near each of its critical points, sketch the trajectories of the solutions of the approximating linear system in the $x y$-phase plane, indicating by arrows the direction of increasing t.
(5) (c) Sketch trajectories of the solutions of system (5) in the $x y$-phase plane for $-\infty<t<\infty$, indicating by arrows the direction of increasing t.

TABLE OF INFORMATION

FUNCTION	LAPLACE TRANSFORM
$f(t)$	$L\{f\{t)\}=F(s)$
$u_{a}(t)$	$\frac{e^{-a s}}{s}$
$u_{a}(t) f(t-a)$	$\frac{e^{-a s} F(s)}{s^{2}+1}$
$\sin t$	$\frac{1}{s^{2}+1}$
$\cos t$	$\frac{F(s)}{s}$
$\int_{0}^{t} f(\tau) d \tau$	$-F^{\prime}(s)$
$t_{0} f(t)$	$F(s) G(s)$
$\int_{0}^{t} f(\tau) g(t-\tau) d \tau$	$e^{-a s}$
$e^{a t} f(t)$	$F(s-a)$
$f^{\prime}(t)$	$f^{\prime \prime}(t)$

