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[12] 1. Consider the surface S : cos(πx)− x2y + exz + yz = 4.

(a) Find the plane tangent to S at (0, 1, 2).

(b) Suppose (0.03, 0.96, z) lies on S. Give an approximate value for z.

(c) Suppose a > 0 is very small. Then the circular cylinder x2 + (y − 1)2 = a2 cuts a tiny disk from
the surface S. Approximately what is the area of this disk?

[12] 2. Show that each critical point of this function gives a local minimum:

f(x, y) = 1
2 (x2y − x− 1)2 + 1

2 (x2 − 1)2.

[12] 3. Find the centroid (x, y, z) of the solid inside the cylinder x2 + y2 = 4, above the plane z = 0, and
below the paraboloid z = 1 + x2 + y2.

[12] 4. Let I =
∫ 2

1

∫ y/
√

3

−y

1√
x2 + y2

dx dy.

(a) Rewrite I as an iterated integral in polar coordinates.

(b) Evaluate I.

Hints:
∫

sec(at) dt = a−1 ln |sec(at) + tan(at)|,
∫

csc(at) dt = a−1 ln |csc(t)− cot(t)|.

[12] 5. Let C be a simple closed curve in the plane 2x + 2y + z = 2, oriented counterclockwise when viewed
from high on the z-axis.

(a) Show that

I(C) def=
∮
C

2y dx + 3z dy − xdz

depends only on the area of the region enclosed by C and not on the position or shape of C.

(b) Let C be the triangular path from (1, 0, 0) to (0, 1, 0) to (0, 0, 2) to (1, 0, 0). Find I(C) by
calculating a cross product and using part (a).

[12] 6. Let S be the surface cut from the parabolic cylinder z = 1− y2 by the planes x = 0, x = 3, and z = 0.
Evaluate

I2 =
∫∫
S

y2z√
4y2 + 1

dS and I3 =
∫∫
S

y3z√
4y2 + 1

dS.

[12] 7. For each a > 0, evaluate Ia
def=
∫
Ca

(
ex ln(y)

)
dx+

(
ex

y
+ sin(z)

)
dy +

(
y cos(z)

)
dz, given

Ca : x = a cos(t), y = a, z = a sin(t), 0 ≤ t ≤ π.

[12] 8. A particle travels from (1, 2) to (−1, 2) along the curve y = 3− x2, then back to (1, 2) along the curve
y = x4 + 1, under the influence of the force

F = (y + ex ln(y)) i + (ex/y) j.

Find the work done, i.e., W =
∮
C

F • dr, for the curve C described above.
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[12] 9. Let S denote the part of the surface z = e−x
2

selected by the simultaneous inequalities y ≥ 0, x ≤ 1,
y ≤ x, and let

F =
〈
x2y − xy, xy2 − xy, z(1 + x+ y − 4xy)

〉
.

Let Φ be the upward flux of F through S.

(a) Express Φ as a double integral over a suitable region D in xy-space.

(b) Use the Divergence Theorem to express Φ as a different double integral over D. Suggestion:
Imagine S as the top surface of a solid E, whose bottom is z = 0 and whose sides are vertical
planes.

(c) Evaluate Φ.

The End
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