The University of British Columbia

Final Examination - April 20, 2007

Mathematics 221

Sections 201, 202, 203

Instructors: Dr. Macasieb, Dr. Tsai, and Dr. Liu

Closed book examination Time: 2.5 hours

Name	Signature	
Student Number		

Special Instructions:

- Be sure that this examination has 12 pages. Write your name on top of each page.
- No calculators or notes are permitted.
- Show all your work. Unsupported solutions deserve no mark.
- In case of an exam disruption such as a fire alarm, leave the exam papers in the room and exit quickly and quietly to a pre-designated location.

Rules governing examinations

- Each candidate should be prepared to produce her/his library/AMS card upon request.
- No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of examination.
- Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- CAUTION Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
- (a) Making use of any books, papers, or memoranda, other than those authorized by the examiners.
 - (b) Speaking or communicating with other candidates.
- (c) Purposely exposing written papers to the view of other candidates.
- Smoking is not permitted during examinations.

1	12
2	10
3	10
4	12
5	10
6	12
7	7
8	12
9	15
Total	100

1. [12pt] Consider the following linear system

$$x + 3y - 2z + 2w = 1$$
$$y + z - 2w = 2$$
$$x + 2y - 2z + aw = 0$$
$$2x + 8y - z + w = b$$

For which values of a and b, if any, does the system have: (Justify you answers!!)

(i) No solution?

- (ii) Exactly one solution?
- (iii) Exactly two solutions?
- (iv) More than two solutions?

April 2007	Math 221	Name:	Page 3 out of 12
Aprii 2007	$\operatorname{Math} ZZ1$	rvame:	rage 5 out of 12

- 2. [10pt] Let S be the map in \mathbf{R}^3 which rotates points about the x_1 -axis by an angle $\pi/2$ (the axes are oriented by the right hand rule). Let T be the map in \mathbf{R}^3 which translates points by the formula $T(x_1, x_2, x_3)^T = (x_1 + 1, x_2 1, x_3)^T$. One of them is a linear transformation and the other is not.
- (i) Decide and justify which one is NOT a linear transformation.
- (ii) You may assume the other one is a linear transformation. Find its standard matrix.

3. [10pt] For what values of k is the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & k \end{bmatrix}$ invertible? When it is invertible, find its inverse.

4. [12pt] Let
$$W = \left\{ \begin{bmatrix} b + 2c - d \\ 2b + 4c - d \\ d \\ -b - 2c + d \end{bmatrix} \middle| b, c, d \text{ real} \right\}.$$

- (i) Find a matrix A such that Col A = W.
- (ii) Find a basis for W.
- (iii) If $B = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & k \\ 1 & 1 & 1 & 3 \end{bmatrix}$ and dim (Row B) = 2, find the value of the constant k.

April 2007	Math 221	Name:	Page 6 out of 12

[blank page]

5. [10pt] Let $A = \begin{bmatrix} x & 1 & 1 & 1 & 1 \\ 1 & x & 1 & 1 & 1 \\ 1 & 1 & x & 1 & 1 \\ 1 & 1 & 1 & x & 1 \\ 1 & 1 & 1 & x & 1 \end{bmatrix}$. Find all values of x such that A is not invertible.

- 6. [12pt] Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2.
- (i) The set $\mathcal{B} = \{1+t, 1+t^2, t+t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector $[2+t-t^2]_{\mathcal{B}}$.
- (ii) The set $C = \{1 + t^2, t + t^2, 1 + t\}$ is also a basis for \mathbb{P}_2 . Find $\vec{p}(t)$ in \mathbb{P}_2 such that $\vec{p}(1) = 1$ and $[\vec{p}(t)]_{\mathcal{B}} = [\vec{p}(t)]_{\mathcal{C}}$.

7. [7pt] Suppose a 2×2 matrix A has eigenvalues 1 and 1/2 with corresponding eigenvectors

$$\vec{v_1} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
 and $\vec{v_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

What is $\lim_{k\to\infty} A^k$?

8. [12pt] Suppose

$$\vec{w_1} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \vec{w_2} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \vec{w_3} = \begin{bmatrix} -1 \\ -1 \\ 7 \end{bmatrix}, \vec{y} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

Let $W = \text{Span}\{\vec{w_1}, \vec{w_2}, \vec{w_3}\}.$

- (i) Determine the dimension of W and find a basis for W.
- (ii) Find an orthogonal basis for W, and the orthogonal projection of \vec{y} onto W.
- (iii) What is the shortest distance from \vec{y} to W?

- 9. [8/2/5pt] The matrix $M = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$. (i) Verify that M has eigenvalues 0 and 3, and find the corresponding eigenspaces.
- (ii) What is the rank of M?
- (iii) Is M diagonalizable? Is there an orthogonal set of eigenvectors of M that forms a basis of \mathbb{R}^3 ? Justify your answers.

April 2007	Math 221	Name:	Page 12 out of 12

[blank page]