Final Exam

April 21, 2008, 15:30-18:00
No books. No notes. No calculators. No electronic devices of any kind.

Name (block letters)

Student Number

Signature

1	2	3	4	5	6	7	8	9	10	total/65

This exam has 10 problems. The first 9 problems are common to all three sections, the last problem is section-specific.

Problem 1. (5 points)
Solve the following linear system. Your answer will depend on k.

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}+x_{4}=1 \\
2 x_{1}+2 x_{2}-3 x_{3}+x_{4}=2 \\
3 x_{1}+3 x_{2}-4 x_{3}+x_{4}=k
\end{array}
$$

Problem 2. (5 points)
Let the matrix A be

$$
A=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & t \\
0 & 3 & 1 & t \\
1 & 0 & -1 & t
\end{array}\right)
$$

Find the inverse of A if possible. Your answer will depend on t.

Problem 3. (5 points)
Let $u=(1,2,-1), v=(-1,0,1), w=(2,3,-2)$ be three vectors in \mathbb{R}^{3}. Let $U=\operatorname{span}\{u, v, w\}$ be the subspace of \mathbb{R}^{3} spanned by u, v, w.
(a) Find the dimension of U.
(b) Find conditions on a, b, c such that the vector (a, b, c) is in U.

Problem 4. (5 points)
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $L\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x \\ y-x\end{array}\right]$. Let $T=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$ be a basis of \mathbb{R}^{2}.
(a) Find the representation of L with respect to the basis T.
(b) Let v be a vector in \mathbb{R}^{2} such that $[L(v)]_{T}=\left[\begin{array}{l}-1 \\ -4\end{array}\right]$. Find v.

Problem 5. (6 points)
Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation for which we know that

$$
L\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad L\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right], \quad L\left(\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-10 \\
-4
\end{array}\right]
$$

(a) What is $L\left(\left[\begin{array}{c}2 \\ 0 \\ -3\end{array}\right]\right)$?
(b) Find the matrix A of L with respect to the standard basis.
(c) Find $\operatorname{det}(A)$.

Problem 6. (6 points)
Consider the homogeneous system $A \vec{x}=0$. Suppose that the Echelon form of A is given by

$$
A_{1}=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) What is rank of A ?
(b) Write down a basis for the solution space of the system $A \vec{x}=0$.
(c) Construct an orthonormal basis for the solution space of the system $A \vec{x}=0$.

Problem 7. (5 points)
Compute the determinant of the matrix

$$
\left(\begin{array}{llll}
0 & 3 & 0 & 2 \\
1 & 0 & t & 0 \\
1 & 0 & 0 & 1 \\
0 & 2 & 3 & 0
\end{array}\right)
$$

Problem 8. (10 points)
For each of the linear maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, find a basis of \mathbb{R}^{2} consisting of eigenvectors of the linear map, or explain why this is not possible.
(a) The dilation $D: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $D(u)=-3 u$ for all $u \in \mathbb{R}^{2}$.
(b) The rotation $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, clockwise by an angle of 90°.
(c) The reflection $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ across the line $x=y$.
(d) The map $T=S \circ R$, (S from (c), R from (b)).
(e) The map B whose matrix is given by

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
$$

Problem 9. (9 points)
Suppose $\vec{v}_{n}=\left(\begin{array}{c}x_{n} \\ y_{n} \\ z_{n}\end{array}\right)$ is the state vector of a dynamical system at time n. Suppose the time dependence of the dynamical system is given by the equations

$$
\begin{aligned}
x_{n+1} & =x_{n}-y_{n}+z_{n} \\
y_{n+1} & =-x_{n}+3 y_{n}-z_{n} \\
z_{n+1} & =-x_{n}+3 y_{n}-z_{n}
\end{aligned}
$$

(a) Find all state vectors that do not change in time (these are vectors such that $\vec{v}_{n+1}=\vec{v}_{n}$, for all n).
(b) Given that $\vec{v}_{0}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, find \vec{v}_{100}.
(c) Given that $\vec{v}_{1}=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ find all possible values for \vec{v}_{0}.

Problem 10. (9 points)
Let $q(x, y, z)=-3 x^{2}-8 x z+5 y^{2}+3 z^{2}$ be a quadratic form.
(a) Find a symmetric matrix A such that $q(x, y, z)=[x y z] A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
(b) The eigenvalues of A are 5 and -5 . Find an orthogonal matrix P and a diagonal matrix D such that $D=P^{-1} A P$.
(c) Find a change of variables $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=P\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]$ and a quadratic form $q^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ such that q^{\prime} is equivalent to q and q^{\prime} does not involve any cross-product term.

