The University of British Columbia

Final Examinations - Dec 13, 2011
Mathematics 221, Section 103
Instructor: K. Behrend

Time: 2.5 hours

Special instructions:

1. No books or notes or electronic aids allowed.
2. Show enough of your work to justify your answer. Show ALL steps.

Problem 1: Consider the system of equations in the variables x_{1}, x_{2}, x_{3} :

$$
\begin{array}{lll}
x_{1}+2 x_{2}+3 x_{3} & =1 \\
x_{1}+x_{2}+2 x_{3} & =2 \\
2 x_{1}+3 x_{2}+(5+t) x_{3} & =2
\end{array}
$$

a) Determine all the values of t for which the system is consistent.
b) For those t for which the system is consistent, give the solution set in parametric form.

Problem 2: a) Determine the values of t for which the following matrix

$$
A=\left(\begin{array}{lll}
3 & 2 & t+3 \\
3 & 4 & t+1 \\
2 & 2 & t+1
\end{array}\right)
$$

is invertible.
b) Compute A^{-1} when $t=0$.

Problem 3: a) Consider the matrix

$$
A=\left(\begin{array}{ll}
-6 & 8 \\
-4 & 6
\end{array}\right)
$$

Compute the eigenvalues of A and a non-zero eigenvector for each eigenvalue.
b) With A as above, compute $\operatorname{det}(B)$, where $B=A^{2}+3 A+2 I$.

Problem 4: Let

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 0 & -1 \\
-1 & 2 & 3
\end{array}\right)
$$

Then is A diagonalizable? Explain your answer.
b) True or false (explain your answer): If v is an eigenvector for the invertible matrix A, then v is also an eigenvector for the matrix A^{-1}.

Problem 5: a) Find the standard matrix of the linear transformation of \mathbf{R}^{3} which reflects across the $y z$-plane.
b) Let

$$
b_{1}=\binom{1}{-1} \quad b_{2}=\binom{1}{0} \quad b_{3}=\binom{3}{4}
$$

Let T denote a linear transformation of \mathbf{R}^{2} such that

$$
T\left(b_{1}\right)=\binom{1}{1} \quad \text { and } \quad T\left(b_{2}\right)=\binom{1}{2}
$$

Find $T\left(b_{3}\right)$, and give the matrix of T with respect to the standard basis of \mathbf{R}^{2}.

Problem 6: Consider the vectors

$$
v_{1}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right), v_{2}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right), v_{3}=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right), v_{4}=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)
$$

a) Check that $v_{1}, v_{2}, v_{3}, v_{4}$ is an orthogonal basis of \mathbf{R}^{4}.
b) Let $b=(1,2,3,4)^{T}$. Then write b as a linear combination of the vectors $v_{1}, v_{2}, v_{3}, v_{4}$.

Problem 7: Let

$$
A=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{6}
\end{array}\right) \quad \text { and let } \quad x_{0}=\left(\begin{array}{l}
5 \\
5 \\
6
\end{array}\right)
$$

Let $x_{n}=A^{n} x_{n}$. Then find $x_{100}=A^{100} x_{0}$. What happens to x_{n} as n becomes very large?

Problem 8: Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 2 & 4 \\
0 & 1 & -2 & 0 & -1 \\
-1 & -2 & 5 & 1 & 4 \\
1 & 0 & -1 & 1 & 2
\end{array}\right)
$$

a) Find a basis for the column space of A.
b) Find the dimension of the nullspace of A.

