Be sure this exam has 3 pages.

THE UNIVERSITY OF BRITISH COLUMBIA

Sessional Examination - December 2006

MATH 223: Linear Algebra
Instructor: Dr. R. Anstee, section 101
Special Instructions: No Aids. No calculators or cellphones.
3 hours
You must show your work and explain your answers.

1. [16 marks] Consider the matrix equation $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{cccccc}
1 & -1 & 0 & 1 & 1 & 0 \\
2 & 0 & 4 & 4 & 2 & 2 \\
2 & -1 & 2 & 3 & 2 & 1 \\
1 & 1 & 4 & 3 & 0 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
4 \\
3 \\
2
\end{array}\right]
$$

There is an invertible matrix B so that

$$
B A=\left[\begin{array}{cccccc}
1 & -1 & 0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad B \mathbf{b}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right]
$$

a) $[1$ mark] What is $\operatorname{rank}(B)$?
b) [2 marks] What is $\operatorname{rank}(A)$?
c) [4 marks] Give the vector parametric form for the set of solutions to $A \mathbf{x}=\mathbf{b}$.
d) [6 marks] Give a basis for the row space of A. Give a basis for the column space of A. Give a basis for the null space of A.
e) [3 marks] How many linearly independent vectors \mathbf{b}^{\prime} can you find so that the system of equations $A \mathbf{x}=\mathbf{b}^{\prime}$ is consistent?
2. [15 marks] Let

$$
A=\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 0
\end{array}\right]
$$

Determine an orthonormal basis of eigenvectors and hence an orthogonal matrix Q and a diagonal matrix D so that $A=Q D Q^{T}$. You may find it useful to know that 5 is an eigenvalue of A.
3. [9 marks]
a) [3 marks] What is the distance of the point $(1,1,1)^{T}$ from the plane $x-2 y+3 z=$ 1 ? Note that the plane does not go through the origin.
b) [3 marks] We are given that A is a symmetric invertible matrix. Show that A^{-1} is symmetric.
c) [3 marks] Let P, Q be orthogonal matrices. Show that $Q^{2} P^{T}$ is an orthogonal matrix.
4. [15 marks] Let

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

You may find it useful to note that:

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

a) [1 marks] Explain why $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ forms a basis for \mathbf{R}^{3}.
b) [5 marks] Consider the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ satisfying

$$
T\left(\mathbf{u}_{1}\right)=\mathbf{u}_{2}+\mathbf{u}_{3}, \quad T\left(\mathbf{u}_{2}\right)=\mathbf{u}_{2}+2 \mathbf{u}_{3}, \quad T\left(\mathbf{u}_{3}\right)=3 \mathbf{u}_{2}+\mathbf{u}_{3} .
$$

Give the matrix A representing T with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ (both input vector and output vector).
c) [5 marks] Give the matrix B representing T where the input vector \mathbf{x} is written with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ (i.e. written in $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$-coordinates) and the output vector $A \mathbf{x}$ is written with respect to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ (i.e. written in $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$-coordinates).
d) [4 marks] What is $\operatorname{rank}(A)$? Explain why $\operatorname{rank}(A)=\operatorname{rank}(B)$, even for a different choice of T ?
5. [6 marks] Let A be a 3×3 matrix with eigenvalues $2,4,6$. What are the eigenvalues of $A+2 I$?
6. [7 marks] Determine the matrix A corresponding to the orthogonal projection into the plane $x-2 y+2 z=0$.

MATH 223 Final Exam
7. [10 points] Consider the system of differential equations:

$$
\begin{gathered}
\frac{d}{d t} x_{1}(t)=2 x_{1}(t)+x_{2}(t) . \\
\frac{d}{d t} x_{2}(t)=-2 x_{1}(t)
\end{gathered}
$$

You will find it useful to be given that

$$
\left.\begin{array}{c}
{\left[\begin{array}{cc}
2 & 1 \\
-2 & 0
\end{array}\right]=} \\
{\left[\begin{array}{cc}
-1 & -1 \\
1-i & 1+i
\end{array}\right]\left[\begin{array}{cc}
1+i & 0 \\
0 & 1-i
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{2}+\frac{1}{2} i & \frac{1}{2} i \\
-\frac{1}{2}-\frac{1}{2} i & -\frac{1}{2} i
\end{array}\right]} \\
1-i \\
-1+i
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-\frac{1}{2}+\frac{1}{2} i & \frac{1}{2} i \\
-\frac{1}{2}-\frac{1}{2} i & -\frac{1}{2} i
\end{array}\right], ~ \$
$$

Find the solution to the system of differential equations that satisfies $x_{1}(0)=x_{2}(0)=1$. For full marks you must simplify your answer so no complex numbers appear.
8. [12 marks]
a) [4 marks] Given two vectors $\mathbf{u}_{1}=(1,2,2,0)^{T}$ and $\mathbf{u}_{2}=(0,3,6,0)^{T}$, find two vectors $\mathbf{u}_{3}, \mathbf{u}_{4}$ so that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a basis for \mathbf{R}^{4}.
b) [4 marks] Given the two vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ as in a), apply Gram-Schmidt to obtain an orthonormal basis for the vector space $V=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
c) [4 marks] Use the orthonormal basis for $V=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ from b) to express $\mathbf{v}=(1,1,1,1)^{T}$ as a sum $\mathbf{v}=\mathbf{u}+\mathbf{w}$ where $\mathbf{u} \in V$ and $\mathbf{w} \in V^{\perp}$. You should not need to compute a complete orthonormal basis for \mathbf{R}^{4}.
9. [10 marks] Let A be a symmetric 4×4 matrix with $\operatorname{det}(A-\lambda I)=(\lambda-2)(\lambda+1)^{3}$. Assume that $(1,1,1,1)^{T}$ is an eigenvector of eigenvalue 2 . Show that $(1,-1,0,0)^{T}$ is an eigenvector of eigenvalue -1 .

100 Total marks

