MATH 223-FINAL EXAM DECEMBER 2007

Name:
 Student ID:

Exam rules:

- No calculators, open books or notes are allowed.
- You do not need to prove results that we proved in class or that appeared in the homework.
- There are 10 problems in this exam. Each problem is worth 5 marks, except problems 1 and 2 where each part is worth 2 marks.
- All vector spaces are over real numbers. The notation is the usual one:
- \mathbb{R}^{n} - the real n-space.
- $M_{m \times n}$ - the space of $m \times n$ matrices.
$-P_{n}$ - the space of polynomials of degree at most n.
$-A^{t}$ is the transpose of the matrix A.
$-N(T)$ and $R(T)$ are the nullspace and the range of T, respectively.

Please draw a box around your final answer to each problem.

Good luck!

Problem 1. In each part below determine if W is a subspace of V, and if it is, find the dimension of W. No proofs are needed here. (But you may want to write down a proof anyway to convince yourself.)
(1)Let $V=M a t_{n \times n}, W=\left\{A \in V \mid A \vec{e}_{1}=\vec{e}_{1}\right\}$.
(2)Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be an onto linear transformation and $U \subset \mathbb{R}^{n}$ a subspace of dimension k. Let

$$
V=\mathbb{R}^{m}, \quad W=\{\vec{v} \in V \mid T(\vec{v}) \in U\}
$$

(3)Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be a set of vectors in \mathbb{R}^{m} that spans \mathbb{R}^{m}. Then

$$
V=\mathbb{R}^{n}, \quad W=\left\{\left.\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \in V \right\rvert\, a_{1} \vec{v}_{1}+\ldots+a_{n} \vec{v}_{n}=\overrightarrow{0}\right\} .
$$

(Hint: construct a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.)
(4)Let V be the set of all sequences $\left(a_{1}, a_{2}, \ldots\right)$ with addition and scalar multiplication componentwise as in \mathbb{R}^{n}. Let W consist of all sequences satisfying $a_{n}=a_{n-1}+a_{n-2}+1$ for all $n \geq 3$.
(5)Assume that $\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis of \mathbb{R}^{n}. Let $V=M a t_{n \times n}$ and W the set of matrices that have β as an eigenbasis.
(6)Let $V=M a t_{n \times n}$, and let $A \in V$ be a matrix of rank r. Then

$$
W=\{B \in V \mid A B=0\}
$$

(Hint: Think in terms of linear transformations.)

Problem 2. In each part below determine if T is a linear transformation. If it is linear, find the rank and the nullity of T. No proofs are needed.
(1)Let $T: P_{3} \rightarrow P_{3}, T(p(x))=x^{3} p\left(\frac{1}{x}\right)$.
(2)Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}, T(\vec{v})=|\vec{v}|$, where $|\vec{v}|$ is the length of \vec{v}.
(3)Let $T: P_{3} \rightarrow P_{4}$,

$$
T(p(x))=\int_{0}^{x} p(t) d t .
$$

(4)Let $T: M a t_{3 \times 3}, T(A)=A+2 A^{t}$.

Problem 3. Find all solutions to the system of linear equations $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 0 & 5 & 0 & -1 \\
0 & 1 & 1 & 3 & -2 & 0 \\
-1 & 2 & 3 & 4 & 1 & -6 \\
0 & 4 & 4 & 12 & -1 & -7
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
3 \\
-1 \\
1 \\
3
\end{array}\right] .
$$

Problem 4. Consider the sequence of numbers $0,1,2,5,12, \ldots$, where $a_{n+1}=2 a_{n}+$ a_{n-1}. When n is large, then a_{n+1} is approximately $c \cdot a_{n}$. Find the constant c.

Problem 5. Let $T: V \rightarrow W$ and $S: W \rightarrow V$ be linear transformations such that $S \circ T=I d_{V}$. Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be a basis of V and $\vec{w}_{1}, \ldots, \vec{w}_{m}$ a basis for $N(S)$. Prove that

$$
T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right), \vec{w}_{1}, \ldots, \vec{w}_{m}
$$

forms a basis of W.

Problem 6. Find the determinant of the matrix

$$
\left[\begin{array}{cccc}
1 & -1 & 5 & 5 \\
3 & 1 & 2 & 4 \\
-1 & -3 & 8 & 0 \\
1 & 1 & 2 & -1
\end{array}\right]
$$

Problem 7. Let A be a symmetric matrix with eigenvalues 2 and 6 . If the vectors

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

$\operatorname{span} E_{6}$, find $A \cdot \vec{e}_{1}$.
(Hint: Find a third eigenvector and expand \vec{e}_{1} in the eigenbasis.)

Problem 8. Consider the following population model of counting a certain species of birds. Divide the total population in year k into two groups: j_{k} is the number of juvenile birds and a_{k} the number of adult birds. A newly hatched bird remains juvenile for one year and then becomes an adult (in other words, a bird hatched in year k counts as a juvenile in year k, and as an adult in year $k+1$.). The following rules describe how to compute j_{k+1} and a_{k+1} :

- $\frac{1}{2}$ of adults survive to the next year.
$\circ \frac{1}{4}$ of juveniles survive to the next year to become adults.
- The number of juveniles hatched in year $k+1$ is twice the number of adults in year k.
Given initial populations $j_{0}=3, a_{0}=3$ (in thousands), find the limit of j_{k}, a_{k} as k approaches infinity. (Hint: Express the initial population in terms of an eigenbasis.)

Problem 9. Find the inverse of the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(To check your computation, the inverse of a symmetric matrix is also symmetric.)

Problem 10. Find an orthonormal eigenbasis for the matrix

$$
\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5
\end{array}\right]
$$

You may assume that the characteristic polynomial of the matrix is $-\lambda^{3}+18 \lambda^{2}-81 \lambda$.

Empty page.

