1. (10 points) Let W denote the subspace of \mathbb{R}^{4} spanned by the set $\{(1,1,0,0),(1,0,1,0),(0,1,0,1),(0,0,1,1)\}$.

Find an orthogonal basis for W.
2. (10 points) Let X be a subspace of \mathbb{R}^{n}. Show that there exists a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that the range of T is exactly X.
3. (15 points) Let T be the matrix

$$
T=\left(\begin{array}{lll}
2 & 0 & 0 \\
2 & 6 & 0 \\
3 & 2 & 1
\end{array}\right)
$$

(a) Find all real eigenvalues for T.
(b) Say whether T is diagonalizable or not.
(c) If T is diagonalizable, find an invertible matrix P such that $P^{-1} T P$ is diagonal.
4. (10 points) Is the matrix

$$
T=\left(\begin{array}{lll}
2 & 0 & 0 \\
2 & 6 & 0 \\
3 & 2 & 1
\end{array}\right)
$$

from the previous problem invertible? If so compute its inverse.
5. (10 points) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation with matrix

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
11 & 14 & 17 & 20
\end{array}\right)
$$

Find a basis for the null-space of T. Then find a basis for the range of T.
6. (10 points) Determine whether $S=\{(1,1,1,1),(1,2,3,2),(2,5,6,4),(2,6,8,5)\}$ is a linearly independent subset of \mathbb{R}^{4}. If not, write one of the elements of S as a linear combination of the others.
7. (10 points) Suppose

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is a real 2×2 matrix whose trace $a+d$ is 1 and whose determinant is 0 . Show that $A^{2}=A$.
8. (10 points) Let n be a positive integer. For each integer $i \in[1, n]$, let p_{i} : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ denote the linear map $p_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$. Suppose $W \subset \mathbb{R}^{n}$ is a proper subspace. Show that there is an integer i such that the map $\pi_{i}: W \rightarrow \mathbb{R}^{n-1}$ given by $w \mapsto p_{i}(w)$ is injective. (Recall that a proper subspace of \mathbb{R}^{n} is a subspace which is not all of \mathbb{R}^{n}.)
9. (15 points) Let V be a vector space over a field F and let k be a positive integer. A flag in V is a sequence

$$
V_{0} \subset V_{1} \subset \cdots \subset V_{k}
$$

of subspaces of V such that, for each integer $i \in[0, k-1], V_{i}$ is a proper subspace of V_{i+1}. The integer k is called the length of the flag. For example, if $V=\mathbb{R}^{3}$, then

$$
\{0\} \subset\langle\{(1,0,0),(1,2,0)\}\rangle \subset V
$$

is a flag.
(a) Write down a flag of length n in the vector space F^{n}.
(b) Suppose that $f: V \rightarrow W$ is an injective linear map of F vector spaces. And $V_{0} \subset V_{1} \subset \cdots \subset V_{k}$ is a flag in V. Show that $f\left(V_{0}\right) \subset f\left(V_{1}\right) \subset \cdots \subset f\left(V_{k}\right)$ is a flag in W.
(c) Show that the the biggest possible length of a flag in F^{2} is 2 .

First Name/Last Name:
Student ID Number: \qquad
Section/Professor:

Signature:

By signing here, you confirm you are the person identified above and that all the work herein is solely your own.

Instructions:

(1) No calculators, books, notes, or other aids allowed.
(2) Give your answer in the space provided. If you need extra space, use the back of the page. PLEASE BOX ALL FINAL ANSWERS! And clearly indicate whether you are planning to prove a statement or give a counterexample at the beginning of the problem.
(3) Show enough of your work to justify your answer. Show ALL steps.

Problem	Points	Score
1	10	
2	10	
3	15	
4	10	
5	10	
6	10	
7	10	
8	15	
9	100	
Total		

