Math 223, Fall Term 2012 Final Exam

December $15^{\text{th}}, 2012$

Student number:

LAST name:

First name:

Signature:

Instructions

- Do not turn this page over. You will have 150 minutes for the exam (between 12:00-14:30)
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences. Proofs should be clear and concise.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.
- All vector spaces are over the field $\mathbb R$ of real numbers unless specified otherwise.

1	/45
2	/15
3	/25
4	/15
Total	/100

1 Calculation

1. (15 points) Let A be the matrix

$$A = \begin{pmatrix} 1 & 2 & 1 & 2 & 1 \\ 3 & 5 & 4 & 3 & 2 \\ 1 & 1 & 2 & -1 & 0 \end{pmatrix}$$

a. Find all solutions to the equation $A\underline{x} = \underline{b}$ where $\underline{b} = \begin{pmatrix} 1 \\ 7 \\ 5 \end{pmatrix}$.

- b. Find the rank of A, as well as a basis for the column space.
- c. Find the dimension of the nullspace (also called kernel) of A, and a basis for this space.

2. (15 points) Find the eigenvalues and an orthonormal basis of eigenvectors for the following matrix:

$$B = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

You may use the fact that 10 is an eigenvalue.

- 3. (10 points) Let $\underline{v} = (1, 1, 1) \in \mathbb{R}^3$. Equip \mathbb{R}^3 with its standard inner product.
- a. Find a basis for the orthogonal complement \underline{v}^{\perp} .
- b. Find the matrix (with respect to the standard basis) of the orthogonal projection onto $\operatorname{Span}(\underline{v})$.

4. (5 points) For which complex numbers z is the following matrix invertible:

$$\begin{pmatrix} 1 & i & 0 \\ 2 & (1+i) & z \\ 2i & z & (1+i) \end{pmatrix}$$

2 Definition

1. (3 points) Let U, V be vector spaces. Define "T is a linear map from U to V" (3 points)

2. (3 points) Let W be another vector space and let $T: U \to V, S: V \to W$ be linear maps. Show that their composition $ST: U \to W$ is a linear map as well.

c. (9 points) For each function decide (with proof) whether it is a linear map between the given spaces.

 $f_1 \colon \mathbb{R} \to \mathbb{R}$ given by $f_1(x) = x + 1$

 $f_2: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ given by $f_2(X) = AXB$ for some fixed $A, B \in M_n(\mathbb{R})$.

 $f_3: M_2(\mathbb{R}) \to \mathbb{R}$ given by $f_3(X) = \det(A + X) - \det(A - X)$ where $A \in M_2(\mathbb{R})$ is a fixed matrix.

3 Problems

1. (7 points) Let V be a vector space, and let $\underline{v}_1, \underline{v}_2, \underline{v}_3 \in V$ be three linearly independent vectors in V. Show that the vectors $\underline{v}_1 + \underline{v}_2, \underline{v}_1 - \underline{v}_2, \underline{v}_1 + \underline{v}_2 + \underline{v}_3$ are linearly independent.

2. (9 points) Let V_n be the space of polynomials of degree less than n, and let $T \in End(V_n)$ be the map (Tp)(x) = (x+1)p'(x). (For example, $(x^2 - 2x + 5) \in V_3$ and $T(x^2 - 2x + 5) = 2x^2 - 2$).

a. Find the matrix of T in a basis of V_n (specify which basis you are using). You may wish to analyze small values of n first.

b. Find the eigenvalues of T. Is it diagonalizable?

3. (9 points) For each of the following three possibilities either exhibit a square matrix A satisfying the inequality or show that no such matrix exists.

- 1. $\operatorname{rank}(A^2) > \operatorname{rank}(A);$
- 2. $\operatorname{rank}(A^2) = \operatorname{rank}(A);$
- 3. $\operatorname{rank}(A^2) < \operatorname{rank}(A)$.

4 Problem (15 points)

Let V be a vector space, and let $\varphi_1, \ldots, \varphi_k$ some k linear functionals on V. We then have a linear map $\Phi: V \to \mathbb{R}^k$ given by $\Phi(\underline{v}) \stackrel{\text{def}}{=} (\varphi_1(\underline{v}), \cdots, \varphi_k(\underline{v}))$ (that is, the *i*th entry of the vector $\Phi(\underline{v})$ is $\varphi_i(\underline{v})$). Show that Φ is surjective if and only if the φ_i are linearly independent.