Math 223, Fall Term 2012
 Final Exam

December $15^{\text {th }}, 2012$

Student number:

LAST name:

First name:

Signature:

Instructions

- Do not turn this page over. You will have 150 minutes for the exam (between 12:00-14:30)
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences. Proofs should be clear and concise.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.
- All vector spaces are over the field \mathbb{R} of real numbers unless specified otherwise.

1	$/ 45$
2	$/ 15$
3	$/ 25$
4	$/ 15$
Total	100

1 Calculation

1. (15 points) Let A be the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 1 & 2 & 1 \\
3 & 5 & 4 & 3 & 2 \\
1 & 1 & 2 & -1 & 0
\end{array}\right)
$$

a. Find all solutions to the equation $A \underline{x}=\underline{b}$ where $\underline{b}=\left(\begin{array}{l}1 \\ 7 \\ 5\end{array}\right)$.
b. Find the rank of A, as well as a basis for the column space.
c. Find the dimension of the nullspace (also called kernel) of A, and a basis for this space.
2. (15 points) Find the eigenvalues and an orthonormal basis of eigenvectors for the following matrix:

$$
B=\left(\begin{array}{lll}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{array}\right)
$$

You may use the fact that 10 is an eigenvalue.
3. ($\mathbf{1 0}$ points) Let $\underline{v}=(1,1,1) \in \mathbb{R}^{3}$. Equip \mathbb{R}^{3} with its standard inner product.
a. Find a basis for the orthogonal complement \underline{v}^{\perp}.
b. Find the matrix (with respect to the standard basis) of the orthogonal projection onto Span (\underline{v}).
4. (5 points) For which complex numbers z is the following matrix invertible:

$$
\left(\begin{array}{ccc}
1 & i & 0 \\
2 & (1+i) & z \\
2 i & z & (1+i)
\end{array}\right)
$$

2 Definition

1. (3 points) Let U, V be vector spaces. Define " T is a linear map from U to V " (3 points)
2. (3 points) Let W be another vector space and let $T: U \rightarrow V, S: V \rightarrow W$ be linear maps. Show that their composition $S T: U \rightarrow W$ is a linear map as well.
c. (9 points) For each function decide (with proof) whether it is a linear map between the given spaces.
$f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{1}(x)=x+1$
$f_{2}: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ given by $f_{2}(X)=A X B$ for some fixed $A, B \in M_{n}(\mathbb{R})$.
$f_{3}: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ given by $f_{3}(X)=\operatorname{det}(A+X)-\operatorname{det}(A-X)$ where $A \in M_{2}(\mathbb{R})$ is a fixed matrix.

3 Problems

1. (7 points) Let V be a vector space, and let $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3} \in V$ be three linearly independent vectors in V. Show that the vectors $\underline{v}_{1}+\underline{v}_{2}, \underline{v}_{1}-\underline{v}_{2}, \underline{v}_{1}+\underline{v}_{2}+\underline{v}_{3}$ are linearly independent.
2. (9 points) Let V_{n} be the space of polynomials of degree less than n, and let $T \in \operatorname{End}\left(V_{n}\right)$ be the map $(T p)(x)=(x+1) p^{\prime}(x)$. (For example, $\left(x^{2}-2 x+5\right) \in V_{3}$ and $T\left(x^{2}-2 x+5\right)=$ $\left.2 x^{2}-2\right)$.
a. Find the matrix of T in a basis of V_{n} (specify which basis you are using). You may wish to analyze small values of n first.
b. Find the eigenvalues of T. Is it diagonalizable?
3. (9 points) For each of the following three possibilities either exhibit a square matrix A satisfying the inequality or show that no such matrix exists.
4. $\operatorname{rank}\left(A^{2}\right)>\operatorname{rank}(A)$;
5. $\operatorname{rank}\left(A^{2}\right)=\operatorname{rank}(A)$;
6. $\operatorname{rank}\left(A^{2}\right)<\operatorname{rank}(A)$.

4 Problem (15 points)

Let V be a vector space, and let $\varphi_{1}, \ldots, \varphi_{k}$ some k linear functionals on V. We then have a linear map $\Phi: V \rightarrow \mathbb{R}^{k}$ given by $\Phi(\underline{v}) \stackrel{\text { def }}{=}\left(\varphi_{1}(\underline{v}), \cdots, \varphi_{k}(\underline{v})\right)$ (that is, the i th entry of the vector $\Phi(\underline{v})$ is $\left.\varphi_{i}(\underline{v})\right)$. Show that Φ is surjective if and only if the φ_{i} are linearly independent.

