MATH 223 - FINAL EXAM DECEMBER 2013

Name:
 Student ID:

Exam rules:

- No calculators, open books or notes are allowed.
- You do not need to prove results that we proved in class or that appeared in the homework.
- There are 10 problems in this exam. Each problem is worth 6 marks.
- All vector spaces are over real numbers. The notation is the usual one:
- \mathbb{R}^{n} - the real n-space.
- $M_{m \times n}$ - the space of $m \times n$ matrices.
$-S y m_{n}$ - the space of $n \times n$ symmetric matrices.
- P_{n} - the space of polynomials of degree at most n.
$-A^{t}$ is the transpose of the matrix A.
$-N(T)$ and $R(T)$ are the nullspace and the range of T, respectively.

Problem 1. Consider the system of linear equations $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & c & 2 \\
1 & 2 & c
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] .
$$

Find all values of c such that the system
(1)has no solution;
(2)has a unique solution;
(3)has infinitely many solutions.

In the last case when there are infinitely many solutions, find all these solutions.

Problem 2. In each part below PROVE that W is a subspace of V and find the dimension of W.
(1)Let $V=M_{n \times n}, W=\left\{\right.$ all A in V, such that \vec{e}_{1} is an eigenvector of $\left.A\right\}$.
(2)Let $V=M_{2 \times 2}, W=\{$ all A in V, such that $A B=B A\}$. Here

$$
B=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]
$$

Problem 3. In each part below PROVE that T is a linear transformation. Find the rank and the nullity of T.
(1)Let $T: P_{3} \rightarrow M_{2 \times 2}$,

$$
T(p(x))=\left[\begin{array}{cc}
p(1) & p^{\prime}(1) \\
p^{\prime}(2) & p(2)
\end{array}\right]
$$

Here $p^{\prime}(x)$ is the derivative of $p(x)$.
(2)Let $T:$ Sym $_{2} \rightarrow M_{2 \times 2}$,

$$
T(A)=B^{t} A B .
$$

Here

$$
B=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]
$$

Problem 4. Find $\operatorname{det}\left(A^{-1} A^{t} B A^{-1}\right)$, where

$$
A=\left[\begin{array}{cccc}
-2 & 1 & 4 & -1 \\
-1 & 1 & 3 & 1 \\
5 & -1 & 2 & 1 \\
2 & -1 & -7 & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
0 & 0 & 0 & -4 \\
0 & 0 & 3 & 5 \\
-1 & 0 & 7 & 2 \\
4 & 2 & -3 & -7
\end{array}\right]
$$

Problem 5. Let V be a finite dimensional vector space and $T: V \rightarrow V$ a diagonalizable linear transformation.
(1)Prove that

$$
\operatorname{Rank}(T)=\operatorname{Rank}\left(T^{2}\right)
$$

(Here T^{2} is the composition $T \circ T$.)
(2)Let $\left\{z_{1}, \ldots, z_{n}\right\}$ be a basis for $N(T)$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ a basis for $R(T)$. Prove that $\left\{z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{m}\right\}$ is a basis for V.

Problem 6. Let A be a symmetric matrix with characteristic polynomial $f_{A}(\lambda)=$ $-\lambda(\lambda-1)^{2}$. Assume that

$$
\vec{v}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

lies in the nullspace of A.
(1)Find an orthonormal eigenbasis for A.
(2)Find A. (You may leave your answer as a product of matrices.)

Problem 7. In a biology experiment rats are placed in three rooms as shown in the picture. The rats move from room to room using each door with equal probability. A rat in room 1 moves to room 2 with probability $1 / 2$ and to room 3 with probability $1 / 2$ (and stays in room 1 with probability 0 .) A rat in room 2 moves to room 1 with probability $1 / 3$ and to room 3 with probability $2 / 3$. A rat in room 3 moves to room 1 with probability $1 / 3$ and to room 2 with probability $2 / 3$.
(1)Find the transition matrix in the Markov chain of this problem.
(2)Find the limiting distribution of rats in each room.

PROBLEM 8. Let $T: P_{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation

$$
T(p(x))=\left[\begin{array}{c}
p(2) \\
p^{\prime}(1) \\
p^{\prime \prime}(0)
\end{array}\right]
$$

Find the inverse of T. Express the final answer in the form

$$
T^{-1}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=(\ldots)+(\ldots) x+(\ldots) x^{2}
$$

Problem 9. Let A be a $m \times n$ matrix and B a $n \times p$ matrix.
(1)If $A B=0$ (the zero matrix), prove that
$\operatorname{Rank}(A)+\operatorname{Rank}(B) \leq n$.
(2)If $A B$ has rank r, prove that

$$
\operatorname{Rank}(A)+\operatorname{Rank}(B) \leq n+r .
$$

Problem 10. Consider the discrete time dynamical system $\vec{x}_{n+1}=A \vec{x}_{n}$, where

$$
A=\left[\begin{array}{lll}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{array}\right], \quad \vec{x}_{0}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] .
$$

(1)Express \vec{x}_{0} in terms of eigenvectors of A. (You may assume that $\lambda=1$ is one eigenvalue.)
(2)Find \vec{x}_{n} for arbitrary n.

Empty page.

