Be sure that this examination has 2 pages.

The University of British Columbia

Sessional Examinations - December 2001
Mathematics 226
Advanced Calculus I

Closed book examination
Time: $2 \frac{1}{2}$ hours

Special Instructions: No notes or calculators are allowed.

Marks
[10] 1. Define carefully:
(a) Differentiability at $(0,0)$ of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$.
(b) The integral, $\int_{R} f d V$, of a function $f: R \rightarrow \mathbf{R}$, where $R=[0,1] \times[0,1] \times[0,1]$.
[15] 2. Give examples of the following. Briefly justify your examples.
(a) A continuous function $f: D \rightarrow \mathbf{R}$ which has no absolute maximum.

Here $D=\left\{(x, y): x^{2}+y^{2}<1\right\}$ is the open unit disk.
(b) A subset of \mathbf{R}^{2} which is neither open or closed.
(c) A discontinuous bounded function $f:[0,1]^{2} \rightarrow \mathbf{R}$, which is integrable over $[0,1]^{2}$.
[8] 3. Find the equation of the plane which contains $(1,2,3)$ and $(4,6,7)$ and is perpendicular to the plane $3 x+2 y+z=1$.
[10] 4. Find and classify all critical points of $f(x, y)=x^{4}+y^{4}-4 x y^{2}$.
$[12]$ 5. Assume temperature (in degrees Celsius) is a C^{1} function $T: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $T(0,0)=$ 10. A particle at $(0,0)$ travelling with speed 1 unit/second in the direction of \mathbf{i} notes an increase of temperature at a rate of $.3^{\circ} \mathrm{C}$ per second and the same particle notes an increase of temperature of $.1^{\circ} \mathrm{C}$ per second when it heads in the direction $.6 \mathbf{i}+.8 \mathbf{j}$.
(a) In what direction should the particle head if it wants to try to maintain its current temperature.
(b) Find $\lim _{h \rightarrow 0} \frac{T(2 h, h)-10}{h}$.
[15] 6. (a) Briefly explain why the function $f(x, y, z)=x+y^{2} z$ on its domain $D=\{(x, y, z)$: $\left.2 x^{2}+y^{2}+z^{2} \leq 1\right\}$ has an absolute maximum and minimum.
(b) Find all absolute minima and maxima of the function in (a).
[16] 7. Evaluate:
(a) The mass of a triangular plate with vertices at $(0,0),(1,1)$ and $(1,3)$, and density $f(x, y)=x y$.
(b) $\int_{0}^{1}\left(\int_{0}^{1-x}\left(\int_{y}^{1} \frac{e^{z^{2}}}{2-z} d z\right) d y\right) d x$.
[10] 8. Let $f(x, y)=\left(2 x+x y, x^{4}+e^{y}-1\right)$ and $g=f \circ f \circ f \circ f$. Find $D g(0,0)$.
$[12]$ 9. (a) Define $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \in[0,1]^{2} \text { and }(x, y) \neq 0 \quad \text { otherwise. }\end{array} \quad\right.$ Show that for each fixed $y \in[0,1], f(x, y)$ is a continuous function of $x \in[0,1]$ and for each fixed $x \in[0,1] f(x, y)$ is a continuous function of $y \in[0,1]$, but f is not a continuous function on $[0,1]^{2}$.
(b) We say $f:[0,1]^{2} \rightarrow \mathbf{R}$ is continuous in x uniformly in y iff for each $x_{0} \in[0,1]$, for all $\varepsilon>0$ there is a $\delta>0$ such that if $x \in[0.1]$ and $\left|x-x_{0}\right|<\delta$, then for all $y \in[0,1],\left|f(x, y)-f\left(x_{0}, y\right)\right|<\varepsilon$. Suppose $f:[0,1]^{2} \rightarrow \mathbf{R}$ is continuous in x uniformly in y and for each $y_{0} \in[0,1]$ is $x \mapsto f(x, y)$ is continuous on $[0,1]$. Prove that f is continuous on $[0,1]^{2}$.

[108] Total Marks

