Be sure that this examination has 2 pages.

The University of British Columbia

Sessional Examinations - December 2001

Mathematics 226

Advanced Calculus I

Closed book examination

Time: $2\frac{1}{2}$ hours

Special Instructions: No notes or calculators are allowed.

Marks

- [10] **1.** Define carefully:
 - (a) Differentiability at (0,0) of a function $f : \mathbf{R}^2 \to \mathbf{R}$.
 - (b) The integral, $\int_{R} f dV$, of a function $f: R \to \mathbf{R}$, where $R = [0, 1] \times [0, 1] \times [0, 1]$.
- [15] **2.** Give examples of the following. Briefly justify your examples.
 - (a) A continuous function $f: D \to \mathbf{R}$ which has no absolute maximum. Here $D = \{(x, y): x^2 + y^2 < 1\}$ is the open unit disk.
 - (b) A subset of \mathbf{R}^2 which is neither open or closed.
 - (c) A discontinuous bounded function $f: [0,1]^2 \to \mathbf{R}$, which is integrable over $[0,1]^2$.
- [8] 3. Find the equation of the plane which contains (1, 2, 3) and (4, 6, 7) and is perpendicular to the plane 3x + 2y + z = 1.
- [10] 4. Find and classify all critical points of $f(x, y) = x^4 + y^4 4xy^2$.
- [12] 5. Assume temperature (in degrees Celsius) is a C^1 function $T : \mathbf{R}^2 \to \mathbf{R}$ and T(0,0) = 10. A particle at (0,0) travelling with speed 1 unit/second in the direction of **i** notes an increase of temperature at a rate of $.3^{\circ}C$ per second and the same particle notes an increase of temperature of $.1^{\circ}C$ per second when it heads in the direction $.6\mathbf{i} + .8\mathbf{j}$.
 - (a) In what direction should the particle head if it wants to try to maintain its current temperature.

(b) Find
$$\lim_{h\to 0} \frac{T(2h,h)-10}{h}$$
.

Continued on page 2

December 2001

- [15] 6. (a) Briefly explain why the function $f(x, y, z) = x + y^2 z$ on its domain $D = \{(x, y, z) : 2x^2 + y^2 + z^2 \le 1\}$ has an absolute maximum and minimum.
 - (b) Find all absolute minima and maxima of the function in (a).
- [16] **7.** Evaluate:
 - (a) The mass of a triangular plate with vertices at (0,0), (1,1) and (1,3), and density f(x,y) = xy.

(b)
$$\int_0^1 \left(\int_0^{1-x} \left(\int_y^1 \frac{e^{z^2}}{2-z} dz \right) dy \right) dx.$$

[10] 8. Let
$$f(x,y) = (2x + xy, x^4 + e^y - 1)$$
 and $g = f \circ f \circ f \circ f$. Find $Dg(0,0)$.

- [12] **9.** (a) Define $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x,y) \in [0,1]^2 \text{ and } (x,y) \neq 0 \\ 0 & \text{otherwise.} \end{cases}$ Show that for each fixed $y \in [0,1], f(x,y)$ is a continuous function of $x \in [0,1]$ and for each fixed $x \in [0,1] f(x,y)$ is a continuous function of $y \in [0,1]$, but f is not a continuous function on $[0,1]^2$.
 - (b) We say $f : [0,1]^2 \to \mathbf{R}$ is continuous in x uniformly in y iff for each $x_0 \in [0,1]$, for all $\varepsilon > 0$ there is a $\delta > 0$ such that if $x \in [0.1]$ and $|x - x_0| < \delta$, then for all $y \in [0,1]$, $|f(x,y) - f(x_0,y)| < \varepsilon$. Suppose $f : [0,1]^2 \to \mathbf{R}$ is continuous in x uniformly in y and for each $y_0 \in [0,1]$ is $x \mapsto f(x,y)$ is continuous on [0,1]. Prove that f is continuous on $[0,1]^2$.

[108] Total Marks