# This examination has 8 questions on 2 pages. 

The University of British Columbia

Final Examinations-December 2002
Mathematics 226
Advanced Calculus I (Professor Loewen)
Closed book examination.
Time: $2 \frac{1}{2}$ hours
Notes, books, and calculators are not allowed.
Write your answers in the booklet provided. Start each solution on a separate page.

## SHOW ALL YOUR WORK!

[10] 1. Sketch the domain of integration and evaluate:

$$
I=\int_{0}^{1} \int_{x}^{x^{1 / 3}} \sqrt{1-y^{4}} d y d x
$$

[10] 2. When $x, y, u, v$ are related by the pair of equations

$$
x=u^{3}+v^{3}, \quad y=u v-v^{2},
$$

the symbol $\partial u / \partial x$ has two possible interpretations. Explain what these are, and calculate both of them at the point corresponding to $u=1, v=1$.
[12] 3. Find the absolute maximum value of $f(x, y)=x^{2} y^{2}(5-x-y)$ in the region where $x \geq 0$ and $y \geq 0$. Justify the "absolute maximum" assertion with care, including a complete statement of any theorem you apply. (If you cannot complete this justification, you may earn partial credit by demonstrating that you have found a local maximum.)
[12] 4. Background Information: Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a point $\mathbf{x}_{0}$ in $\mathbb{R}^{n}$, Newton's Method for the approximate maximization of $f$ involves two steps:
(1) Find $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the best quadratic approximation for $f$ near the point $\mathbf{x}_{0}$.
(2) Find a critical point for $Q$ and call it $\mathbf{x}_{1}$.

In good cases, the critical point $\mathbf{x}_{1}$ maximizes $Q$, and lies closer to a local maximizer for $f$ than the original point $\mathbf{x}_{0}$. (The process can be repeated.)
Action Request: Using $f(x, y)=x^{2} y^{2}(5-x-y)$ as in Question 3, and $\mathbf{x}_{0}=(1,1)$, apply Newton's Method as described above to find $\mathbf{x}_{1}$. Is this a "good case"?
[12] 5. Find $J=\iiint_{R} z d V$, where $R$ is the subset of $\mathbb{R}^{3}$ defined by

$$
x \geq 0, \quad y \geq 0, \quad x^{2}+y^{2} \leq z \leq \sqrt{12-x^{2}-y^{2}}
$$

## This examination has 8 questions on 2 pages.

[15] 6. An ant crawls on the surface of a rugby ball: the surface obeys

$$
x^{2}+\frac{y^{2}}{2}+z^{2}=1
$$

The temperature $\left(\right.$ in $\left.^{\circ} \mathrm{C}\right)$ at each point $(x, y, z)$ on this surface is given by

$$
T(x, y, z)=\frac{8}{\sqrt{2}} y z \sin \left(\frac{\pi}{2} x\right) .
$$

As the ant passes through the point $P=\left(\frac{1}{2}, 1, \frac{1}{2}\right)$, it follows a path that makes its temperature increase most rapidly.
(a) Find a vector tangent to the ant's path at $P$.
(b) If the ant's speed is $\beta$ units/second, find its instantaneous velocity vector and its perceived rate of change of temperature at point $P$. Give units for your answers.
[15] 7. Let $S$ denote the part of the sphere $x^{2}+y^{2}+z^{2}=5 r^{2}$ where $x>0, y>0$, and $z>0$.
(a) Find the maximum value of $3 \ln x+\ln y+\ln z$ over $S$.
(b) Use the result in (a) to prove that for all positive real numbers $a, b, c$,

$$
a^{3} b c \leq 27\left(\frac{a+b+c}{5}\right)^{5}
$$

[14] 8. (a) Assuming $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, give precise definitions for these statements:
(i) $f$ is continuous at $(0,0), \quad$ and
(ii) $f$ is differentiable at $(0,0)$.

Parts (b)-(d) refer to the specific function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{2}(1+\pi y)+y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 1, & \text { if }(x, y)=(0,0)\end{cases}
$$

(b) Prove that $f$ is continuous at $(0,0)$.
(c) Find $\partial_{1} f(0,0)$ and $\partial_{2} f(0,0)$.
(d) Prove that $f$ is not differentiable at $(0,0)$. [Clue: Consider $f(t, t)$.]

## 9. BONUS QUESTION (5 MARKS):

Prove: Every continuously differentiable function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that at every point $(x, y, z), \nabla F(x, y, z)$ is parallel to $\left(z, e^{y}, z \cos (x)\right)$,
satisfies $F\left(\frac{\pi}{2}, 0,-a\right)=F\left(\frac{\pi}{2}, 0, a\right)$ for every $a>0$.

