This examination has 8 questions on 2 pages.

The University of British Columbia

Final Examinations-December 2003
Mathematics 226
Advanced Calculus I (Professor Loewen)
Closed book examination.
Time: $2 \frac{1}{2}$ hours

Notes, books, and calculators are not allowed.
Write your answers in the booklet provided. Start each solution on a separate page.

SHOW ALL YOUR WORK!

[10] 1. A nonzero vector \mathbf{c} in \mathbb{R}^{3} is given, along with constants a, k obeying $|k|<a|\mathbf{c}|$. Show that the plane $\mathbf{c} \bullet \mathbf{x}=k$ and the sphere $|\mathbf{x}|=a$ intersect in a circle. Find the centre and radius of the circle in terms of a, k, \mathbf{c}.
[10] 2. Show that the curve of intersection

$$
C: \quad x^{2}-y^{2}+z^{2}=1, \quad x y+x z=2
$$

meets the following surface tangentially at the point $(1,1,1)$:

$$
S: \quad x y z-x^{2}-6 y=-6 .
$$

[12] 3. Functions $f, g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ are of class C^{1}, and obey

$$
f(\mathbf{0})=0=g(\mathbf{0}), \quad \nabla f(\mathbf{0})=(2,3,0,-1), \quad \nabla g(\mathbf{0})=(2,1,-1,-2) .
$$

Use this information in both (a) and (b) below.
(a) If the variables u, v, x, y are related by the equations

$$
f(u, v, x, y)=0, \quad g(u, v, x, y)=0
$$

evaluate the following quantities at the point $(u, v, x, y)=(0,0,0,0)$:

$$
\left(\frac{\partial u}{\partial x}\right)_{y}, \quad\left(\frac{\partial u}{\partial x}\right)_{v}
$$

(b) Evaluate $D \mathbf{F}(\mathbf{0})$, where $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by

$$
\mathbf{F}(x, y)=\left[\begin{array}{l}
f(u(x, y), v(x, y), x, y) \\
g(u(x, y), v(x, y), x, y)
\end{array}\right],
$$

with $\quad u(x, y)=e^{x} \cos y+x e^{y}+y-1 \quad$ and $\quad v(x, y)=e^{y}(1-\cos x)+\sin 3 x$.
[13] 4. Find all critical points of the function

$$
f(x, y)=\left(x^{2}+3 y^{2}\right) e^{1-x^{2}-y^{2}}
$$

and classify each one as a local maximizer, local minimizer, or saddle point. Does f have an absolute maximum on \mathbb{R}^{2} ? If so, what is it?

This examination has 8 questions on 2 pages.

[15] 5. Consider the triangle $T=\{(x, y, z): x>0, y>0, z>0, x+y+z=1\}$.
(a) Is T a closed subset of \mathbb{R}^{3} ? Support your answer with a complete explanation, including the definition of a closed set.
(b) Let $f(x, y, z)=x^{p} y^{q} z^{r}$, where $p>0, q>0, r>0$ are given. Show that f has an absolute maximum over T, but no absolute minimum over T.
(c) Find the maximum value and the maximizing point for the function f in part (b). Answer in terms of p, q, r; do not assume these are integers.
[10] 6. Find the volume of the solid region R in (x, y, z)-space defined by

$$
\sqrt{x^{2}+y^{2}} \leq z \leq 12-x^{2}-y^{2} .
$$

[15] 7. Let R denote the solid region of (x, y, z)-space defined by

$$
y \geq x^{2}, \quad 0 \leq z \leq 1-y
$$

(a) Let $I=\iiint_{R} f d V$. Fill in the blanks in the equations shown here:

$$
I=\int_{\square}^{\square} \int_{\square}^{\square} \int_{\square}^{\square} f d z d y d x=\int_{\square}^{\square} \int_{\square}^{\square} \int_{\square}^{\square} f d y d z d x=\int_{\square}^{\square} \int_{\square}^{\square} \int_{\square}^{\square} f d x d y d z
$$

(b) If the centroid of R lies at $(\bar{x}, \bar{y}, \bar{z})$, find \bar{x} and \bar{y}. (\bar{z} is not required.)
[15] 8. In each part of this problem, provide a precise definition of the underlined word or phrase as part of your solution. Let

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Is f continuous at $(0,0)$? Give a complete justification for your answer.
(b) Show that the directional derivative $D_{\hat{\mathbf{u}}} f(0,0)$ exists for every unit vector $\widehat{\mathbf{u}}=(u, v)$, and evaluate it in terms of u and v.
(c) Is f differentiable at $(0,0)$? Give a complete justification for your answer.
[0] 9. [Bonus Question: 5 marks possible, no partial credit.]
Certain functions $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$, all of class C^{2}, satisfy the following equations at every point $(x, y) \in \mathbb{R}^{2}$:

$$
u_{x x}+u_{y y}=0, \quad v_{x x}+v_{y y}=0, \quad u(x, y)=f(v(x, y)) .
$$

It is known that v has no critical points. Prove: For some real constants a and b,

$$
u(x, y)=a v(x, y)+b \quad \text { for all }(x, y) \in \mathbb{R}^{2} .
$$

[100] Total Marks Available

