Marks

[10] 1. A curve in R³ is given by the parametric equation x(t) = (e^t, e^{-t}, √2t).
(a) (4 marks) Find the length of the curve between t = 0 and t = 1.

(b) (6 marks) Find the curvature at a general point $\mathbf{x}(t)$.

[12] **2.** Let $f(x, y) = xe^y - y^2e^x$.

(a) (6 marks) Find the first- and second-order Taylor polynomials $P_1(x, y)$ and $P_2(x, y)$ at (0, 1). (It is not necessary to simplify your answers.)

(b) (6 marks) Prove that $f(x, y) - P_1(x, y)$, where P_1 is the first-order Taylor polynomial from (a), has a local maximum at (0, 1). (Hints: (1) $e \approx 2.72$, (2) you have done most of the necessary calculations in (a).)

April 2009 Mathematics 227 Name

[8] **3.** Find the minimum distance from the origin to the surface z(3x + 4y) = 20.

- [10] **4.** Evaluate the following integrals:
 - (a) $(5 \text{ marks}) \int \int_D \cos(x^2) dA$, where D is the triangle in the xy-plane with vertices (0,0), (2,0), (2,2);

(b) (5 marks) $\int \int \int_W xz \, dV$, where W is the bounded solid enclosed by the planes z = 0, z = 2, y = 0, y = x, and the cylinder $x^2 + y^2 = 1$.

- [12] 5. Evaluate the line integrals below. (Use any methods you like.)
 - (a) (6 marks) $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$, where $\mathbf{F} = x\mathbf{i} + 2y\mathbf{j} + 4z\mathbf{k}$ and \mathbf{x} is the parametrized curve (cos $t + \sin t, \cos t \sin t, t$), $0 \le t \le 1$.

(b) (6 marks) The (outward) flux of $\mathbf{F}(x, y) = (x^3 + \sin y)\mathbf{i} + e^{x+y}\mathbf{j}$ across the boundary of the rectangle $0 \le x \le 1, \ 0 \le y \le 2$ in the *xy*-plane.

[12] **6.**

(a) (4 marks) Find a function f(x, y) such that $\mathbf{F} = \nabla f$, where $\mathbf{F}(x, y) = (x^2 + y^2)\mathbf{i} + 2xy\mathbf{j}$.

(b) (4 marks) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{s}$, where C is any oriented piecewise C^1 curve from (1,2) to (3,4) and \mathbf{F} is the vector field in (a).

(c) (4 marks) Let $\mathbf{F} = \nabla f$ be a conservative vector field (not necessarily the same as in (a)-(b)), and let $\mathbf{x}(t)$ be a flow line of \mathbf{F} . Prove that $\frac{d}{dt}f(\mathbf{x}(t)) \ge 0$.

[8] 7. Let $\mathbf{F} = (x+z)\mathbf{i} + (y+2z)\mathbf{j} + (2x+3y)\mathbf{k}$. What are the possible values of $\int_C \mathbf{F} \cdot d\mathbf{s}$, if C is a circle of radius r contained in a plane x + 3y - z = a?

- [16] 8. Let X be the parametrized surface $\mathbf{X}(s,t) = (t \cos s, t \sin s, 2t), 0 \le s \le \pi/2, 1 \le t \le 2$. Evaluate the following integrals:
 - (a) (8 marks) $\int \int_{\mathbf{X}} z^2 dS$,

(b) (8 marks) $\int \int_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S}$, if $\mathbf{F} = y^2 \mathbf{i}$.

[12] 9. Let $\omega = (x+z)dx \wedge dy + (y-x)dy \wedge dz$.

(a) (4 marks) Compute $d\omega$. Simplify your answer.

(b) (8 marks) Find $\int_{\mathbf{X}} \omega$, if $\mathbf{X}(s,t) = (t+s,t,s^2), -1 \le s \le 1, 0 \le t \le 1$.

Be sure that this examination has 10 pages including this cover

The University of British Columbia

Sessional Examinations - April 2009

Mathematics 227

Advanced Calculus II

Closed book examination

Time: 2.5 hours

Print Name	Signature
Student Number	Instructor's Name
	Section Number

Special Instructions:

No calculators, notes, or books of any kind are allowed. Show all calculations for your solutions. If you need more space than is provided, use the back of the previous page.

Rules governing examinations		
1. Each candidate should be prepared to produce his library/AMS card upon request.		
2. Read and observe the following rules:		
No candidate shall be permitted to enter the examination room after the expiration of one half		
hour, or to leave during the first half hour of the examination.		
Candidates are not permitted to ask questions of the invigilators, except in cases of supposed		
errors or ambiguities in examination questions.		
CAUTION - Candidates guilty of any of the following or similar practices shall be immediately		
dismissed from the examination and shall be liable to disciplinary action.		
(a) Making use of any books, papers or memoranda, other than those authorized by the		
examiners.		
(b) Speaking or communicating with other candidates.		
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or		
forgetfulness shall not be received.		
5		

3. Smoking is not permitted during examinations.

1	10
2	12
3	8
4	10
5	12
6	12
7	8
8	16
9	12
Total	100