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1) Answer the following questions. You need not show work for 

this section. 

 

A) What is −2 + 3? (1 mark) 

 

 

B) Spencer, Alana, and Jacob equally share 1242 gumballs. 

How many does each kid get? (1 mark) 

 

C) True or False: The equation 𝑑𝑥 + 𝑑𝑦 = 0 is exact.  

(1 mark) 

 

D) True or False: 𝑥0 = 0 is an ordinary point of the ODE 

𝑥2𝑦′′ + 𝑦 = 0. (1 mark) 

 

E) True or False: Metals have low thermal conductivity.  

(1 mark) 

 

F) True or False: The Special Fundamental Matrix Ψ satisfies 

Ψ 𝑡 + 𝑠 = Ψ 𝑡 Ψ(𝑠). (1 mark) 

 

G) True or False: The function 𝑓 𝑥 = sinh 𝑥 is odd.  

(1 mark) 

 

H) True or False: Fick's Law describes diffusion. (1 mark) 

 

 

I) True or False: Laplace's Equation in Cartesian coordinates 

is 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0. (1 mark) 

 

J) True or False: Fourier's Law of Heat Conduction describes 

the spontaneous transfer of thermal energy through matter, 

from regions of higher temperature to lower temperature. 

(1 mark) 
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2) Let 𝐴 be an 𝑛 × 𝑛 matrix with eigenvalue 𝑟, and 

corresponding eigenvector 𝜉  and corresponding generalized 

eigenvector 𝜂 . Show that 𝑥 = 𝑡𝑒𝑟𝑡𝜉 + 𝑒𝑟𝑡𝜂  solves 𝑥 ′ = 𝐴𝑥 .  
(10 marks) 
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3)  Solve 𝑦′′ + 4𝑦 = 4𝑡2 + 5𝑒𝑡 , 𝑦 0 = 5.5, 𝑦′ 0 = 7.  

(10 marks) 
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4) Find the solution of 𝑢𝑡𝑡 = 𝑢𝑥𝑥  subject to the boundary 

conditions 𝑢 0, 𝑡 = 𝑢 1, 𝑡 = 0 and the initial conditions 

𝑢 𝑥, 0 = −𝑥(𝑥 − 1), 𝑢𝑡 𝑥, 0 = 0. (10 marks) 
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4 Cont'd) 
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5) Consider the following story about Romeo and Juliet. Denote 

𝑅 𝑡 =  Romeo's love/hate for Juliet at time 𝑡, 

𝐽 𝑡 =  Juliet's love/hate for Romeo at time 𝑡. 

Positive and negative values correspond to love and hate 

respectively. Their story is described by the pair of ODEs 

𝑅′ = 𝑎𝑅 + 𝑏𝐽, 

𝐽′ = 𝑏𝑅 + 𝑎𝐽, 

for some constants 𝑎 < 0 and 𝑏 > 0. 

5a) Give a physical interpretation of the ODEs. (4 marks) 
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5b) Take 𝑎 = −2 and 𝑏 = 3. Plot a phase portrait for the ODEs. 

Under what initial conditions do Romeo and Juliet both fall in love 

with each other? (6 marks) 
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6) Show that 𝑥0 = 0 is a regular singular point of the ODE 

𝑥2𝑦′′ + 𝑥𝑦′ +  𝑥2 −
1

4
 𝑦 = 0. (2 marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6b) Solve 𝑥2𝑦′′ + 𝑥𝑦′ +  𝑥2 −
1

4
 𝑦 = 0 near 𝑥0 = 0. (8 marks)  
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7) Consider the equation 𝑎𝑢𝑥𝑥 − 𝑏𝑢𝑡 + 𝑐𝑢 = 0, where 𝑎, 𝑏, 𝑐 

are constants. By a suitable change of variables, reduce this 

equation to a heat equation. (10 marks) 

 

  



Math 256 Final Exam Page 12 
 

8) Show that 
𝜋

4
= 1 −

1

3
+

1

5
−

1

7
+ ⋯. (10 marks) 

Hint: Consider the Fourier series of 𝑓 𝑥 = 𝑥 on [−1,1]. 
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9) Consider the modified wave equation 

 

𝑢𝑡𝑡 + 𝑢 = 𝑢𝑥𝑥 , 0 < 𝑥 < 1, 𝑡 > 0 
 

with the boundary conditions 

 

𝑢 0, 𝑡 = 0,𝑢 1, 𝑡 =  0, 𝑡 > 0 
 

and the initial conditions 

 

𝑢 𝑥, 0 = 𝑓 𝑥 ,𝑢𝑡 𝑥, 0 = 𝑔(𝑥), 0 < 𝑥 < 1. 
 

Solve for 𝑢 = 𝑢(𝑥, 𝑡). (10 marks) 
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9 Cont'd) 
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10) Find the steady state temperature distribution 𝑇 on a disk of 

radius 𝑎 which satisfies the boundary condition 

 

𝑇𝑟 𝑎,𝜃 = 𝑔 𝜃  for 0 ≤ 𝜃 < 2𝜋. 
 

Note that this is a Neumann problem and that its solution is 

determined only up to an arbitrary additive constant. State a 

necessary condition on 𝑔(𝜃) for this problem to be solvable by the 

method of separation of variables. What does this condition mean 

physically? (10 marks) 
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10 Cont'd) 

 


