Math 256 Section 201 Final Exam Spring 2007 Instructor: Paul A.C. Chang

Last Name: \qquad

First Name: \qquad

Student Number: \qquad

Email Address: \qquad

INSTRUCTIONS:

- Do not lift the cover page until instructed!
- Write your last name, first name, student number, and email address in the spaces above.
- No calculators allowed.
- This exam consists of 10 questions on 16 pages (including this one).
- The maximum score on this exam is 100 .
- You have 180 minutes to complete this exam.
- Good Luck!

1) Answer the following questions. You need not show work for this section.
A) What is $-2+3$? (1 mark)
B) Spencer, Alana, and Jacob equally share 1242 gumballs. How many does each kid get? (1 mark)
C) True or False: The equation $d x+d y=0$ is exact. (1 mark)
D) True or False: $x_{0}=0$ is an ordinary point of the ODE $x^{2} y^{\prime \prime}+y=0$. (1 mark)
E) True or False: Metals have low thermal conductivity. (1 mark)
F) True or False: The Special Fundamental Matrix Ψ satisfies $\Psi(t+s)=\Psi(t) \Psi(s) .(1$ mark $)$
G) True or False: The function $f(x)=\sinh x$ is odd. (1 mark)
H) True or False: Fick's Law describes diffusion. (1 mark)
I) True or False: Laplace's Equation in Cartesian coordinates is $u_{x x}+u_{y y}+u_{z z}=0$. (1 mark)
J) True or False: Fourier's Law of Heat Conduction describes the spontaneous transfer of thermal energy through matter, from regions of higher temperature to lower temperature. (1 mark)
2) Let A be an $n \times n$ matrix with eigenvalue r, and corresponding eigenvector $\vec{\xi}$ and corresponding generalized eigenvector $\vec{\eta}$. Show that $\vec{x}=t e^{r t} \vec{\xi}+e^{r t} \vec{\eta}$ solves $\vec{x}^{\prime}=A \vec{x}$. (10 marks)
3) Solve $\quad y^{\prime \prime}+4 y=4 t^{2}+5 e^{t}, \quad y(0)=5.5, \quad y^{\prime}(0)=7$. (10 marks)
4) Find the solution of $u_{t t}=u_{x x}$ subject to the boundary conditions $u(0, t)=u(1, t)=0$ and the initial conditions $u(x, 0)=-x(x-1), u_{t}(x, 0)=0 .(10$ marks $)$

4 Cont'd)

5) Consider the following story about Romeo and Juliet. Denote

$$
\begin{aligned}
& R(t)=\text { Romeo's love/hate for Juliet at time } t \\
& J(t)=\text { Juliet's love/hate for Romeo at time } t
\end{aligned}
$$

Positive and negative values correspond to love and hate respectively. Their story is described by the pair of ODEs

$$
\begin{aligned}
R^{\prime} & =a R+b J \\
J^{\prime} & =b R+a J
\end{aligned}
$$

for some constants $a<0$ and $b>0$.
5a) Give a physical interpretation of the ODEs. (4 marks)

5b) Take $a=-2$ and $b=3$. Plot a phase portrait for the ODEs. Under what initial conditions do Romeo and Juliet both fall in love with each other? (6 marks)
6) Show that $x_{0}=0$ is a regular singular point of the ODE $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0 .(2$ marks $)$

6b) Solve $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0$ near $x_{0}=0$. (8 marks)

6 Cont'd)

7) Consider the equation $a u_{x x}-b u_{t}+c u=0$, where a, b, c are constants. By a suitable change of variables, reduce this equation to a heat equation. (10 marks)
8) Show that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$. (10 marks) Hint: Consider the Fourier series of $f(x)=x$ on $[-1,1]$.
9) Consider the modified wave equation

$$
u_{t t}+u=u_{x x}, 0<x<1, t>0
$$

with the boundary conditions

$$
u(0, t)=0, u(1, t)=0, t>0
$$

and the initial conditions

$$
u(x, 0)=f(x), u_{t}(x, 0)=g(x), 0<x<1
$$

Solve for $u=u(x, t)$. (10 marks)

9 Cont'd)

10) Find the steady state temperature distribution T on a disk of radius a which satisfies the boundary condition

$$
T_{r}(a, \theta)=g(\theta) \text { for } 0 \leq \theta<2 \pi
$$

Note that this is a Neumann problem and that its solution is determined only up to an arbitrary additive constant. State a necessary condition on $g(\theta)$ for this problem to be solvable by the method of separation of variables. What does this condition mean physically? (10 marks)

10 Cont'd)

