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2. Candidates are not permitted to ask questions of the invigilators, except in cases

of supposed errors or ambiguities in examination questions.
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of the examination.

4. Candidates suspected of any of the following, or similar, dishonest practices shall

be immediately dismissed from the examination and shall be liable to disciplinary

action.

(a) Having at the place of writing any books, papers or memoranda, calculators,

computers, audio or video cassette players or other memory aid devices, other than

those authorized by the examiners.

(b) Speaking or communicating with other candidates.

(c) Purposely exposing written papers to the view of other candidates. The plea of

accident or forgetfulness shall not be received.

5. Candidates must not destroy or mutilate any examination material; must hand

in all examination papers; and must not take any examination material from the

examination room without permission of the invigilator.
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Marks

[20] 1. Linear 2nd order differential equations.

(a) Show that the equation
t2y′′ + 6ty′ + 4y = 0,

has 2 solutions of form tn, i.e. find these solutions.

(b) Show that the 2 solutions in part (a) are linearly independent and hence write down the
general solution of the above equation.

Continued on page 3
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(c) Find a particular solution to

t2y′′ + 6ty′ + 4y = 28t3,

and hence find the solution to this inhomogeneous problem that satisfies initial conditions
y(1) = 1, y′(1) = 0.

Continued on page 4
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[20] 2. Consider the equation:
y′′ + βy′ + 2y = g(t)

which models a damped forced oscillator for β > 0.

(a) Writing x = (x1, x2)T where x1 = y and x2 = y′, transform this equation into a 2 x 2
linear system:

x′ = Ax + f ,

i.e. derive the expressions for the matrix A and vector function f .

(b) Assume that g(t) = 0. Find the general solution of the homogeneous system:

x′ = Ax

(i) for β = 2; (ii) for β = 3.

Continued on page 5
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(c) Sketch the phase plane close to x = 0 for the two above cases: (i) β = 2; (ii) β = 3. At
what value of β does the phase plane change between these two qualitatively different
solutions?

(d) For β = 2 and assuming g(t) = e−t, find the general solution of the inhomogeneous
system:

x′ = Ax + f .

Continued on page 6



April 2008 MATH 256 Name Page 6 of 13 pages

[10] 3. Use Laplace transforms to solve the following initial value problem:

y′′ + y′ +
5
4
y = t− u2(t)(t− 2)− 2u4(t), y(0) = y′(0) = 0.

Continued on page 7
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[15] 4. The function f(x) is defined for x ∈ [0, 1] by

f(x) = −0.5(x2 + x)

(a) Sketch the odd and even extensions of f(x) to the interval x ∈ [−1, 1].

(b) Find the Fourier cosine series for f(x). To what value does the Fourier series converge
to at x = 1?

Continued on page 8
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(c) Find the Fourier sine series for f(x). To what value does the Fourier series converge to
at x = 1?

Continued on page 9
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[20] 5. Consider the the following IBVP

ut = uxx − 1, 0 < x < 1, t ≥ 0,

subject to the conditions: u(0, t) = 0, u(1, t) = 1, u(x, 0) = 0.

(a) Writing u(x, t) = us(x) + v(x, t) state the problems that are satisfied by the steady state
solution, us(x), and the transient solution v(x, t).

(b) Find the steady state solution, us(x).

Continued on page 10
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(c) Find the transient solution, v(x, t) using separation of variables. Hint: you may save
some time with the initial conditions by using the results from question 4.

Continued on page 11
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(d) Using the 1st term in the series solution for v(x, t) estimate how long it takes for |v(x, t)|
to decay to 1% of its initial size at x = 0.5.

Continued on page 12
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[15] 6. Use separation of variables to solve the BVP:

uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

subject to the conditions: u(0, y) = 0, u(1, y) = 0, u(x, 0) = 0, u(x, 1) = sin 3πx.

Continued on page 13
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The End


