THE UNIVERSITY OF BRITISH COLUMBIA
 Sessional Examinations. April 2005

MATHEMATICS 257
 Partial Differential Equations and MATHEMATICS 316
 Elementary Differential Equations II

Closed book examination
Time: 2 1/2 hours

1) Calculators are not allowed in this examination.
2) A standard size (both sides) sheet of notes, is allowed in this examination.

I-[15] 1) Show that $x=0$ is a rfegular singular point of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-x^{2} y=0$.
2) Find two linearly independent solutions of the differential equation near $x=0$. What is the radius of convergence of the two power series solutions?

II-[15] Let

$$
f(x)= \begin{cases}\pi & \text { if }-\pi \leq x<0 \\ \pi-x & \text { if } 0 \leq x<\pi\end{cases}
$$

with $f(x+2 \pi)=f(x)$.

1) Find the Fourier series corresponding to the given function $f(x)$.
2) Sketch the graph of the fnction to which the series converges over two periods.

III-[25] Solve the damped wave equation

$$
\begin{aligned}
u_{t t}+2 u_{t} & =u_{x x}-\sin x, 0<x<\pi, 0<t \\
u(0, t)=0 & , \quad u_{x}(\pi, t)=2 \\
u(x, 0)=f(x) & , \quad u_{t}(x, 0)=0,0<x<\pi .
\end{aligned}
$$

Hint Write $u(x, t)=v(x)+w(x, t)$.

IV-[25] Solve the boundary value problem

$$
\begin{aligned}
& u_{x x}+u_{y y}+2 u_{y}+u=0,0<x<1,0<y<1 \\
& u(0, y)=0=u(1, y), 0<y<1 \\
& u(x, 0)=3 \sin (5 \pi x), u_{y}(x, 1)=2 \sin (3 \pi x)
\end{aligned}
$$

V-[20] Solve the initial boundary value problem

$$
\begin{aligned}
u_{t}-u_{x x} & =t \sin (5 \pi x), \quad 0<x<1,0<t \\
u(0, t)=0 & =u(1, t) \\
u(x, 0) & =x(1-x), 0<x<1
\end{aligned}
$$

