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ory aid devices, other than those authorized by the examiners.
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(c) Purposely exposing written papers to the view of other can-

didates or imaging devices. The plea of accident or forgetfulness
shall not be received.
• Candidates must not destroy or mutilate any examination mate-
rial; must hand in all examination papers; and must not take any
examination material from the examination room without permis-
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[20] 1. Consider the differential equation

4x2y′′ + xy′ − (1 + 3x)y = 0 (1)

(a) Classify the points 0 ≤ x < ∞ as ordinary points, regular singular points, or

irregular singular points.

(b) Find two values of r such that there are solutions of the form y(x) =
∞∑

n=0

anx
n+r.

(c) Use the series expansion in (b) to determine two independent solutions of (1).

You only need to calculate the first three non-zero terms in each case.

(d) Determine the radius of convergence of the series in (c).
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(Question 1 Continued)
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[25] 2. Consider the following initial boundary value problem for the heat equation:

ut = uxx, 0 < x < 1, t > 0

ux(0, t) = 1 and u(1, t) = 0 (2)

u(x, 0) = cos(3πx/2), 0 < x < 1

(a) Determine a steady state solution to the boundary value problem. [5 marks]

(b) Use this steady state solution to determine the solution to the boundary value

problem (2) by separation of variables. [10 marks]

(c) Briefly describe how you would use the method of finite differences to obtain

an approximate solution this boundary value problem. Use the notation

uk
n ' u(xn, tk) to represent the nodal values on the finite difference mesh.

Explain how you propose to approximate the boundary conditions. [10 marks]

Hint: It might be useful to know that
∫ 1

0
(1− x) cos

((
2n+1

2

)
πx

)
dx = 4

π2(2n+1)2
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(Question 2 Continued)
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(Question 2 Continued)
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[15] 3. The displacement u(x, t) of a string of length 1 subject to viscous damping satisfies
the damped wave equation

utt + 2ut = uxx

The string is set in motion from its initial displacement u = f(x) from rest while both the
ends of the string are held fixed. Use separation of variables to solve for the displacement of
the string as a function of time by solving the following boundary value problem:

utt + 2ut = uxx 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = f(x), ut(x, 0) = 0

Since f(x) is not specified, you may leave the expressions for the Fourier coefficients as
integrals.
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(Question 3 Continued)
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[20] 4. Use separation of variables to solve the following mixed boundary value problem

for the semi-circular region:

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < a, 0 < θ < π

u(r, 0) = 0 and
∂u

∂θ
(r, π) = 0

u(r, θ) < ∞ as r → 0 and u(a, θ) = 1



December 5, 2008 Math 257/316 Name: Page 10 of 15 pages

(Question 4 Continued)



December 5, 2008 Math 257/316 Name: Page 11 of 15 pages

[20] 5. Solve the following inhomogeneous initial boundary value problem for the heat

equation:

ut = uxx + e−2t sin (5πx) + (1− x), 0 < x < 1, t > 0

u(0, t) = t and u(1, t) = 0

u(x, 0) = sin (πx)
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(Question 5 Continued)



December 5, 2008 Math 257/316 Name: Page 13 of 15 pages

(Additional Page)



December 5, 2008 Math 257/316 Name: Page 14 of 15 pages

(Additional Page)



December 5, 2008 Math 257/316 Name: Page 15 of 15 pages

(Additional Page)


