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[20] 1.

(a) Fourier series: Compute the Fourier sine series of f(x), defined on [0, π] by f(x) = cosx.
[8 marks]

Continued on page 3
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(b) Consider the following boundary value problem for Laplace’s equation on half an annulus.

urr +
1

r
ur +

1

r2
uθθ = 0,

u(r, 0) = 0, 1 < r < 2,

u(r, π) = 0, 1 < r < 2,

u(1, θ) = sin 3θ, 0 < θ < π.

u(2, θ) = cos θ, 0 < θ < π.

Find the solution using separation of variables. [12 marks]

Continued on page 4
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Question 1b continued

Continued on page 5
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[20] 2. The motion of a string subject to a gravitational load satisfies the following initial-boundary
value problem:

utt = a2uxx − g, 0 < x < 1, t > 0 (∗)

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(πx), ut(x, 0) = 0.

Here g is the acceleration due to gravity and a is the wave speed. Treat both as fixed constant
parameters.

(a) Determine the static deflection of the string, which is determined by solving (*) subject
to the boundary conditions, but setting utt = 0, i.e. it is a steady state. [8 marks]

Continued on page 6
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(b) Use the solution obtained in (a) to reduce the initial-boundary value problem to solving
a homogeneous wave equation subject to homogeneous boundary conditions. Now use
separation of variables to determine the solution to this boundary value problem and
hence the complete solution of the entire initial-boundary value problem. [12 marks]

HINT: The following integral may be useful:∫ 1

0

(x2 − x) sinnπx dx = 2
cosnπ − 1

(nπ)3

.

Continued on page 7
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Question 2b continued

Continued on page 8
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[20] 3. The function f(x) is defined for x ∈ (0, 1) by f(x) = x2 − 1/3.
The following are 4 different Fourier series that each converge to f(x) on (0, 1)

A:
∑∞

n=1 an cos(n− 1/2)πx, an =

(
4(−1)n+1

3(n− 1/2)π
+

4(−1)n

[(n− 1/2)π]3

)
.

B:
∑∞

n=1 bn sinnπx, bn =

(
4(−1)n+1 − 2

3nπ
+

4[(−1)n − 1]

[nπ]3

)
.

C:
∑∞

n=1 cn cosnπx, cn =
4(−1)n

(nπ)2
.

D:
∑∞

n=1 dn sin(n− 1/2)πx, dn =

(
−2

3(n− 1/2)π
+

4(−1)n+1

[(n− 1/2)π]2
− 4

[(n− 1/2)π]3

)
.

(a) To what value does series B converge to at x = 1/2? [1 mark]

(b) To what value does series A converge to at x = 0? [1 mark]

(c) To what value does series D converge to at x = 1? [1 mark]

(d) To what value does series C converge to at x = −1/2? [1 mark]

HINT: you should not need to sum any series to evaluate these.

Continued on page 9
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(e) To what value does series A converge to at x = −1/2? [1 mark]

(f) To what value does series D converge to at x = 1? [1 mark]

(g) To what value does series C converge to at x = 0? [1 mark]

(h) To what value does series B converge to at x = −1/2? [1 mark]

HINT: you should not need to sum any series to evaluate these.

Continued on page 10
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Question 3 continued

(i) Use 2 of the Fourier series given to help solve the following BVP

uxx + uyy = 0, 0 < x < 1, 0 < y < 1

u(x, 0) = x2 − 1/3, 0 < x < 1,

u(x, 1) = 0, 0 < x < 1,

ux(0, y) = 0, 0 < y < 1,

ux(1, y) = y2 − 1/3, 0 < y < 1.

[12 marks]

Continued on page 11
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Question 3i continued

Continued on page 12
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[20] 4. Consider the the following IBVP

ut = uxx − 1, 0 < x < 1, t ≥ 0,

subject to the conditions: u(0, t) = 0, u(1, t) = 1, u(x, 0) = 0.

(a) Writing u(x, t) = us(x) + v(x, t) state the problems that are satisfied by the steady state
solution, us(x), and the transient solution v(x, t). [4 marks]

(b) Find the steady state solution, us(x). [4 marks]

Continued on page 13
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(c) Find the transient solution, v(x, t) using separation of variables.
HINT: The following integral may be useful:∫ 1

0

(x2 − x) sinnπx dx = 2
cosnπ − 1

(nπ)3
.

[8 marks]

Continued on page 14
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Question 4c continued:

Continued on page 15
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(d) Estimate how long it takes for |v(x, t)| to decay to 1% of its initial size at x = 0.5,
i.e. when is |v(0.5, t)| = 0.01|v(0.5, 0)|? You may base your estimate on the 1st non-zero
term in the series solution for v(x, t) and may leave your estimate in the form of an
expression involving ln (or similar functions) as you don’t have a calculator. [4 marks]

Continued on page 16
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[20] 5. Series solutions of 2nd order differential equations.

(a) Find 2 linearly independent series solutions, y =
∑∞

k=0 akx
k, to the DE:

y′′ + 2xy′ − y = 0.

What is the radius of convergence of these solutions? [7 marks]

NOTE: If you are are unable to give a general formula for the coefficients, evaluate the first 3 terms
in each series and give the general recurrence relationship.

Continued on page 17
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Question 5a continued:

Continued on page 18
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(b) Using part (a) write down the general solution to

y′′ + 2xy′ − y = 0,

and find the solution that satisfies initial conditions y(0) = 2, y′(0) = 0. [4 marks]

Continued on page 19
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(c) Consider the DE:
4xy′′ + 2y′ + y = 0.

Classify the points 0 ≤ x < ∞ as either: ordinary points, regular singular points or
irregular singular points. [4 marks]

Continued on page 20
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(d) Find a series solution close to x = 0, for the following DE

4xy′′ + 2y′ + y = 0.

[4 marks]

The End


