Marks

[15] 1. Suppose that the electrical potential V in space is given by the function

$$
V(x, y, z)=x^{2}+2 y^{2}+e^{z} .
$$

(a) What is the equation of the tangent plane to the equipotential surface $V(x, y, z)=3$ at $x=1, y=1, z=0$.
(b) A particle moves along the path $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}-1\right\rangle$. What is the rate of change of the electrical potential when the particle passes through the point $\langle 1,1,0\rangle$.
[14] 2. Find the absolute minimum of the function $f(x, y)=4+2 x y-x-y$ on the triangle bounded by the lines $x=0, y=0$ and $x+y=2$.
[14] 3. For what value of a is the vector field

$$
\mathbf{F}=\left\langle a x e^{2 y+z}, 2 x^{2} e^{2 y+z}, x^{2} e^{2 y+z}\right\rangle
$$

conservative? For this value of a find a function $f(x, y, z)$ such that $\mathbf{F}=\nabla f$.
[12] 4. Let E be the solid (in the first octant) bounded by the coordinate planes and two parabolic cylinders $z=1-x^{2}$ and $z=1-y^{2}$. Make a sketch of E and find its volume.
[10] 5. Evaluate the iterated integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-z^{2}}}^{\sqrt{1-z^{2}}} \int_{0}^{x^{2}+z^{2}} y d y d x d z
$$

Make a sketch of the region of integration.
[15] 6. Let S be the surface of the paraboloid

$$
z=9-x^{2}-y^{2}
$$

that remains above the $x y$ plane (i.e., $z \geq 0$) oriented with an upward normal.
(a) What is the boundary curve $C=\partial S$ and what direction is its positive orientation?
(b) What surface S_{1} in the $x y$ plane, with what assignment of normal, has the same boundary curve as S with the same orientation?
(c) Evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ where

$$
\mathbf{F}(x, y, z)=\left\langle x e^{z}-3 y, y e^{z^{2}}+2 x, x^{2} y^{2} z^{2}\right\rangle
$$

(We are using the notation $\nabla \times \mathbf{F}$ for $\operatorname{curl}(\mathbf{F})$.)
[20] 7. Consider the vector field

$$
\mathbf{F}(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})
$$

(a) Evaluate $\nabla \times \mathbf{F}$ and $\nabla \cdot \mathbf{F}$. (We are using the notation $\nabla \times \mathbf{F}$ for $\mathbf{c u r l}(\mathbf{F})$ and $\nabla \cdot \mathbf{F}$ for $\operatorname{div}(\mathbf{F})$).
(b) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve witn parametrization

$$
\mathbf{f}(t)=\langle 2 \sin t, 3 \cos t, 3\rangle, \quad 0 \leq t \leq 2 \pi .
$$

(c) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the surface of the solid bounded by the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ and the plane $z=0$, with outward pointing normal vector.

Be sure that this examination has 9 pages including this cover

The University of British Columbia

Sessional Examinations - December 2006
Mathematics 263
Multivariable and Vector Calculus
Time: 2.5 hours

Print Name \qquad
Student Number \qquad Instructor's Name \qquad

Section Number

\qquad

Special Instructions:

No calculators, cell phones, or books are allowed.
You may bring one letter-sized formula sheet.
For all questions, you must show your work (i.e., intermediate steps) for full credit.

Rules governing examinations

1		15
2		14
3		14
4		12
5		10
6		15
7		20
Total		100

